

Report of Findings and Corrective Action Plan

For February 2, 3, and 9, 2006 Subsurface Investigation

Dated:

May 17, 2006

Site:

Big Foot Gas 2801 Central Avenue McKinleyville, California 95519

LOP # 12365

Prepared for:

Big Oil & Tire Co.

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY (ROF)	5
2.0	INTRODUCTION	7
2.1	SITE DESCRIPTION	7
2.2	VICINITY DESCRIPTION	8
2.3	Hydrogeologic Setting	8
2.4	CURRENT SITE USAGE & UST HISTORY	9
3.0	ENVIRONMENTAL SITE HISTORY AND PREVIOUS INVESTIGAT	TIONS 10
3.1	1991 Installation of two (2) 12,000-gallon Gasoline USTs	10
3.2	1991 REMOVAL OF FORMER GASOLINE AND KEROSENE USTS	10
3.3	1995 CGI SITE INVESTIGATION	11
3.4	2000 SounPacific Investigation	11
3.5	2002 SOUNPACIFIC INVESTIGATION	12
3.6	2003 SITE ASSESSMENT (SOUNPACIFIC)	12
3.7	GROUNDWATER MONITORING (MAY 2002-CURRENT)	13
4.0	RECENT INVESTIGATION	14
4.1	SOIL COLLECTION PROCEDURES	14
4.2	SOIL SAMPLING AND ANALYSIS METHODS	15
4.3	GROUNDWATER COLLECTION AND SAMPLING PROCEDURES	15
4.4	GROUNDWATER ANALYSIS	16
5.0	RESULTS	17
5.1	SOIL ANALYTICAL RESULTS	17
5.2	GROUNDWATER ANALYTICAL RESULTS	17
6.0	SENSITIVE RECEPTOR SURVEY	18
7.0	EMERGENY RESPONSE	18
8 U	SITE CONCEDTIAL MODEL	10

9.1 <i>9.1</i>	REMEDIAL INTRODUCTION AND METHODS	
9.1		21
	1.1 Alternative 1: Pump and Treat	22
9.1	1.2 Alternative 2: Bio-Sparging	23
9.1	1.3 Alternative 3: Chemical Oxidization/Injection	24
9.1	1.4 Alternative 4: No Action with Monitored Natural Attenuation	25
9.2	Analysis of Remedial Alternatives	25
9.2	2.1 Screening Criteria	25
9.2	2.2 Evaluation of Alternative based on Screening Criteria	26
9.3	Proposed Remedial Alternative	29
9.4	Schedule	30
10.0	SUMMARY AND RECOMMENDATIONS	31
11.0	CERTIFICATION	22
TABLI	ES	
	LE 1: WATER LEVELS AND EL	
TABL	LE 1: WATER LEVELS AND EL LE 2: GROUNDWATER ANALYTICAL	RESULTS
TABL	LE 1: WATER LEVELS AND EL LE 2: GROUNDWATER ANALYTICAL LE 3: SOIL ANALYTICAL	. RESULTS
TABL	LE 1: WATER LEVELS AND EL LE 2: GROUNDWATER ANALYTICAL	. RESULTS
TABL TABL TABL	LE 1:	. RESULTS
TABL TABL TABL	LE 1:	. RESULTS . RESULTS NG WELLS
TABL TABL TABL CHAR	LE 1:	. RESULTS . RESULTS NG WELLS DROGRAPH
TABL TABL TABL CHAR CHAR CHAR	LE 1:	RESULTS RESULTS NG WELLS PROGRAPH TE - MW-1
TABL TABL TABL CHAR CHAR CHAR	LE 1:	RESULTS RESULTS NG WELLS PROGRAPH TE - MW-1 TE - MW-2
TABL TABL TABL CHAR CHAR CHAR CHAR CHAR	LE 1:	RESULTS RESULTS OROGRAPH E - MW-1 E - MW-2 E - MW-3
TABL TABL TABL CHAR CHAR CHAR CHAR CHAR	WATER LEVELS AND EL E 1: GROUNDWATER ANALYTICAL E 3: SOIL ANALYTICAL E 4: GROUNDWATER ANALYTICAL RESULTS FROM MONITORIN TS RT 1: HYD RT 2: HYDROCARBON CONTAMINATION VERSUS TIM RT 3: HYDROCARBON CONTAMINATION VERSUS TIM RT 4: HYDROCARBON CONTAMINATION VERSUS TIM	RESULTS RESULTS OROGRAPH E - MW-1 E - MW-2 E - MW-3 E - MW-4
TABL TABL TABL CHAR CHAR CHAR CHAR CHAR CHAR CHAR	E 1: WATER LEVELS AND EL E 2: GROUNDWATER ANALYTICAL E 3: SOIL ANALYTICAL E 4: GROUNDWATER ANALYTICAL RESULTS FROM MONITORIN TS RT 1: HYDROCARBON CONTAMINATION VERSUS TIME RT 3: HYDROCARBON CONTAMINATION VERSUS TIME RT 4: HYDROCARBON CONTAMINATION VERSUS TIME RT 5: HYDROCARBON CONTA	RESULTS RESULTS ROGRAPH E - MW-1 E - MW-2 E - MW-3 E - MW-4 E - MW-5

REMEDIAL ALTERNATIVES......21

9.0

FIGURES

FIGURE 1:	AERIAL/TOPO MAP
Figure 2:	SITE PLAN
Figure 3:	SUMMARY OF GROUNDWATER FLOW DIRECTIONS
Figure 4:	SAMPLE LOCATION MAP
Figure 5:	Soil Results Map
Figure 6:	GROUNDWATER RESULTS MAP
Figure 7:	LITHOLOGIC CROSS-SECTION A-A'
Figure 8:	LITHOLOGIC CROSS-SECTION B-B'
Figure 9:	GROUNDWATER TPHG ISOCONTOURS
Figure 10:	GROUNDWATER MTBE ISOCONTOURS

APPENDICES

APPENDIX A:	BORING LOGS
APPENDIX B:	LABORATORY ANALYTICAL REPORT
APPENDIX C:	STANDARD OPERATING PROCEDURES

1.0 EXECUTIVE SUMMARY (ROF)

At the request of Big Oil & Tire Co. (BO&T), the current property owner, SounPacific Environmental Services (SounPacific) conducted a *Subsurface Investigation* of the leaking underground facility tank (LUFT) site (Big Foot Gas) located at 2801 Central Avenue, McKinleyville, California.

- On February 2, 3, and 9, 2006, SounPacific staff performed a subsurface investigation consisting of drilling and sampling fifteen (15) soil borings both onsite and offsite to further delineate the lateral and vertical extent of petroleum hydrocarbon contamination. A product line was encountered in one (1) of the borings (B-34) so no samples were collected at this location.
- Soil analytical results from the February 2006 investigation revealed that virtually no soil impact was present at any of the drilled locations. Total Petroleum Hydrocarbons as gasoline (TPHg) was detected at a maximum concentration of 3.2 parts per million (ppm), TPH as diesel (TPHd) was detected at a maximum concentration of 90 ppm and TPH as motor oil (TPHmo) was detected at a maximum concentration of 51 ppm. Other constituents, such as methyl tertiary butyl ether (MTBE) were sporadically detected at concentrations well below one (1) ppm. The highest concentrations were typically encountered at or above a depth of two feet below ground surface (bgs) in fill placed under the asphalt surface. These results indicated that the source(s) of the sorbed phase plume causing the groundwater impact were unlikely to have been intersected during this drilling event.
- Groundwater analytical results collected from boreholes indicated that TPHg (maximum 23,000 parts per billion (ppb), and its' constituents, benzene, toluene, total xylenes, and ethylbenzene (BTXE), were present near the south end of the building and near the dispenser islands. MTBE (maximum 3,300 ppb) was detected near the dispenser islands.

TPHd (maximum 520 ppb) was also detected sporadically throughout the Site. TPHmo is detected (maximum 20,000 ppb) randomly throughout the Site.

• The investigation revealed that the extent of any residual impacted soil at the Site is extremely limited and that impacted groundwater has yet to leave the Site in any appreciable quantity.

2.0 INTRODUCTION

This Report of Findings (*ROF*) has been prepared for the Big Foot Gas facility (the Site) located at 2801 Central Avenue in McKinleyville, California and documents the Site investigation and associated work conducted in February 2006. The work was conducted in accordance with the scope of work presented in SounPacific's *Subsurface Investigation Work Plan*, dated August 3, 2005, and the work plan addendum, *Response to Work Plan Approval Letter* dated August 22, 2005. The work plan was originally approved by HCDEH in a letter dated August 22, 2005, with the addendum being approved on October 27, 2005.

2.1 Site Description

The Big Foot Gas facility is an active fueling service station located on the northeast corner of the intersection of Murray Road and Central Avenue (Figure 1). The facility is surfaced around the current structure with concrete and asphalt. Unpaved and undeveloped areas exist to the north and east of the service station. Site improvements include a single story building with an overhead awning that covers the main dispenser islands. The main structure is approximately 800 square feet and is located near the center of the property with the entrance facing west towards Central Avenue. A small out-building is attached to the main structure at the north end of the property which is used for storage (Figure 2).

Two (2) 12,000-gallon split compartmented USTs, are in a single excavation at the southwest portion of the property, located between the station and Central Avenue. The USTs store three (3) grades of unleaded gasoline and diesel fuel, which is dispensed from two (2) main dispenser islands located under the awning on the west side of the building (Figure 2). BO&T owns, operates, and is responsible for the maintenance and testing of the UST system. The Site is serviced by public utilities. Surface water is controlled by drainage ditches and storm drains.

2.2 Vicinity Description

The surrounding land use is mixed rural residential and commercial. An automobile garage is located immediately to the south of the Site across Murray Road; property adjacent to the east and north of the Site is scheduled to be developed. It is anticipated that it is being developed for self storage units. The property across Central Avenue to the west is undeveloped.

2.3 Hydrogeologic Setting

The Site is approximately two (2) miles east of the Pacific Ocean and approximately 110 feet above mean sea level (amsl). The Site is situated approximately 600 feet south of Norton Creek and 1,400 feet North of Widow White Creek According to the United States Geological Survey Arcata North Quadrangle California-Humboldt County, 7.5 minute series (Topographic) 1959 (photo-revised 1972), a tributary of Norton Creek is re-routed into an underground culvert along the south side of the Site. Norton Creek is also artificially controlled along the eastern side of Central Avenue near the Site. These two (2) engineered drainage features intersect near the southwestern corner of the property and flow west, toward the Pacific Ocean (Figure 2). It is unknown if the engineered drainage along the southern and western boundaries of the Site exhibit any hydraulic influence on groundwater flow directly beneath the Site. However, groundwater has been encountered just beneath the asphalt and concrete covering so some influence is anticipated. Topography consists of rolling terrain that gently slopes west toward the Pacific Ocean (Figure 1). The on-going groundwater-monitoring program has determined that groundwater levels vary from one (1) foot to 5.5 feet below ground surface (bgs) throughout the year, with a westerly to northwesterly flow direction toward the Pacific Ocean (Figure 3).

This site is located on an uplifted marine terrace that has informally been named the Savage Creek Terrace (Carver & Burke, 1992). This marine terrace consists of non- to poorly-indurated shallow marine sands, with minor silt, clay, and gravel. This marine terrace is relatively flat, moderately incised by surface drainages (small creeks & streams), exhibits some warping, and gently slopes towards the Pacific Ocean (Figure 1). These sediments were deposited on wave-

cut benches, which have since been exposed by tectonic uplift and changes in sea level. Marine terrace deposits typically range in thickness up to a few tens of feet and are late Pleistocene in age. Soil development on these marine terraces has broken down minerals within the sands and near the ground surface there is an increased concentration of clays as a result.

2.4 Current Site Usage & UST History

SounPacific understands that the property is currently owned by BO&T of Arcata, California. The main structure is currently used as a retail gas station for the retail dispensing of three (3) grades of gasoline and diesel fuel from USTs onsite. A commercial propane tank is present on the north section of the property, and is used for the filling small propane tanks for the public (Figure 2).

BO&T purchased the Site from the Fuquas in 1982. The current service station building was constructed on the Site in early 1964 at which time three USTs were installed. Minimal information regarding the Site is available prior to the installation of the two 12,000-gallon USTs in May 1991 by Beacom Construction (Beacom) of Fortuna, California. The two 12,000-gallon USTs were installed in the southwestern part of the property (Figure 2). On July 11, 1991, Beacom removed one 2,000-gallon gasoline UST and one 1,000-gallon kerosene UST from separate excavations in the northerly and easterly portions of the Site (Figure 2). Humboldt County records also suggest that some sort of older structure was present on the Site prior to 1964; however, County records only extend back in time to the early 1950s and are typically incomplete or very limited for this early period of time.

3.0 ENVIRONMENTAL SITE HISTORY AND PREVIOUS INVESTIGATIONS

Previous reports by Clearwater Group, Inc. (CGI) and SounPacific indicate the following historical information:

3.1 1991 Installation of Two (2) 12,000-gallon Gasoline USTs

In May 1991, Beacom installed two 12,000-gallon USTs (Figure 4) at the Site. Prior to the installation, three (3) groundwater samples (TP-1, TP-2, and TP-3) were collected from the excavation (Figure 4). Laboratory analysis of the groundwater samples did not report any constituents above laboratory detection limits (Table 2). In June of 1991, Beacom collected six (6) soil samples (W-1, W-2, E-1, E-2, E-3, and S-1) (Figure 4) from beneath the product lines. Petroleum hydrocarbons were reported in all six samples, with the highest concentrations (TPHg at 210 ppm) in sample E-2, which was located to the southeast of the eastern dispenser islands.

3.2 1991 Removal of Former Gasoline and Kerosene USTs

On July 1991, Beacom removed one 2,000-gallon gasoline UST and one 1,000-gallon kerosene UST from separate excavations at the Site, see Figure 4. At the Site of the gasoline UST, two (2) soil samples were collected from the sidewalls of the excavation, along with two (2) samples from beneath the product lines, and a groundwater sample from the excavation pit (Figure 4). Elevated levels of TPHg and BTXE were reported in one of the product line samples (S-3 reported 5,000 ppm TPHg), which was adjacent to the west of the station (Tables 2 and 3). Beacom also collected two (2) soil samples and one (1) groundwater sample from the kerosene UST removal excavation (Figure 4). TPH as solvent (TPHs) was reported in the groundwater at elevated levels (Table 2).

3.3 1995 CGI Site Investigation

On November 7, 1995, CGI conducted a preliminary site assessment at the facility to evaluate the extent of soil contamination related to the former 2,000-gallon gasoline UST and the former 1,000-gallon kerosene UST. The investigation was performed in accordance with the Trans Tech Consultants' *Work Plan Preliminary Site Assessment*, dated June 12, 1993, and the *Work Plan Addendum*, dated March 12, 1993. The investigation consisted of hand auguring two (2) soil borings near the former 2,000-gallon gasoline UST (SB-1 and SB-2) and two (2) soil borings near the former 1,000-gallon kerosene UST (SB-3 and SB-4) (Figure 4). Based on the results from this investigation, it was determined that secondary sources of contamination remained near the former 2,000-gallon gasoline UST and near previous product lines S-3 (Table 3). CGI recommended excavation of additional soils and the installation of groundwater monitoring wells.

3.4 2000 SounPacific Investigation

In a letter dated January 1998, HCDEH requested a work plan to investigate the extent of groundwater hydrocarbon contamination from the previously removed USTs and product lines, and to perform interim remedial actions at the Site. In September 2000, SounPacific performed a subsurface investigation at the Site in accordance with Phase 1 of the approved CGI *Revised Subsurface Investigation and Interim Remediation Workplan*, dated August 14, 1999, and the CGI *Workplan Addendum*, dated December 21, 1999. The purpose of the investigation was to further evaluate the extent of soil and groundwater onsite. Ten (10) soil borings (B-1 through B-10) (Figure 4) were hand augured to depths ranging from 6.3 feet bgs to 9.5 feet bgs, with the exception of borings B-4 and B-5, in which cement was encountered just below the surface of the soil. Groundwater samples were collected from eight (8) boring locations (B-1 through B-3, and B-6 through B-10). Elevated levels of TPHg, BTXE, and MTBE were reported in borings B-7 and B-10, in the area between the station and the USTs and the area east of the dispenser islands, respectively (Table 1). Soil samples were collected from nine (9) boring locations (B-1 through B-3 and B-5 through B-10). A soil sample from boring B-5 was also analyzed for TPHd

due to empirical evidence observed in the field. Elevated levels of TPHg were reported in boring B-10 (Table 2). As MTBE was detected in six (6) out of eight (8) groundwater samples, along with the presence of other gasoline constituent contaminants, SounPacific recommended that further investigation was needed to define the extent of contamination, including the investigation of potential contaminant transport conduits, the installation of monitoring wells, and the initiation of a groundwater monitoring program.

3.5 2002 SounPacific Investigation

In a letter dated March 1, 2001, HCDEH requested a work plan to determine the extent of contamination at the Site and to evaluate preferential transport pathways. On April 22, 2002, SounPacific conducted a subsurface investigation in accordance with the approved *Subsurface Investigation Work Plan*, dated April 10, 2001. The investigation consisted of the drilling and sampling of seven (7) soil borings (B-11, B-13 through B-18) and the drilling and installation of six (6) two-inch diameter groundwater monitoring wells (MW-1 through MW-6) (Figure 4). Soil and groundwater samples were collected from each boring location (Table 2 and 3).

The highest level of contamination was present in well MW-5, which is located adjacent to the former 2,000-gallon gasoline UST. SounPacific identified three discrete areas that appear to have elevated groundwater contamination. SounPacific recommended that a work plan be developed to deal with these three areas of concern and that quarterly sampling and monthly water levels be continued.

3.6 2003 Site Assessment (SounPacific)

On June 20, 2003, SounPacific submitted to HCDEH a Fourth Quarterly Groundwater Monitoring / Site Assessment Report. The report discussed the Site's groundwater monitoring program, and presented a site conceptual model that interpreted all previous investigative work at the Site and provide recommendations for future activity. The report interpreted that the information gathered to date indicated that the soil plume has been delineated to the east, northeast, and southeast, but that further investigation is needed just to the north of the dispenser

islands around borings B-16, B-17, and B-18; to the west of the UST tank farm; and to the south in the area of boring B-5. SounPacific recommended that a work plan be prepared to delineate the soil plume in these areas and that the scope of work include a series of borings near the product lines, which would be used to determine whether the product line trenches were acting as preferential pathways. In a letter dated July 14, 2003, HCDEH concurred with SounPacific's recommendation to prepare a work plan to delineate the source(s) of contamination in the particular areas. SounPacific submitted a *Subsurface Investigation Workplan*, dated August 3, 2005, which was approved by HCDEH in a letter dated August 22, 2005. SounPacific also submitted a work plan addendum, *Response to Workplan Approval Letter* dated August 22, 2005, which further clarified SounPacific's rational and intent for work proposed in the August 3, 2005 work plan. This addendum was approved in a letter from HCDEH date October 27, 2005. The results of this investigation are presented in this report

3.7 Groundwater Monitoring (May 2002-Current)

Following the installation of the six (6) initial groundwater monitoring wells (MW-1 through MW-6) in May 2002, a quarterly groundwater monitoring program was implemented. The program consists of quarterly groundwater sampling and analysis, along with monthly water measuring for the first year, after which water levels were recorded on a quarterly basis, along with the sampling event. Since the inception of the monitoring program, the depth to groundwater at the Site has ranged from less than one foot bgs to approximately six (6) feet below ground surface (bgs). Primary groundwater flow direction has fluctuated, with a generalized flow direction to the west. Laboratory analysis has consistently reported TPHg, BTXE, and MTBE in all the wells except well MW-1, located in the northeast corner of the service station. The highest levels of contamination have consistently been reported in well MW-5, which is in the southeast corner of the Site, in the area of the former gasoline UST system and MW-4, near the Site's product lines. Groundwater contamination has also been consistently reported in wells MW-3 and MW-6, both on the Site's western property boundary. The presences of contamination in these wells would indicate the contamination has migrated offsite and is present beneath Central Avenue. Groundwater monitoring is scheduled to continue.

4.0 RECENT INVESTIGATION

Previous subsurface investigations have identified both soil and groundwater contamination; however, due to the shallow depth to groundwater, many of the contaminated soil samples have been collected from beneath the water table. However, whereas the groundwater contamination appears to be widespread, soil contamination appears to be primarily limited to the areas of the product lines. The primary objective of the recent investigation was to delineate both the vertical and lateral extent of the soil and groundwater contamination.

On February 2, 3, and 9, 2006, SounPacific oversaw the drilling of fifteen (15) direct-push borings (B-19, B-21, B-22, B-23, B-25, B-27, B-28, B-29, B-30, B-33, B-34, B-37, B-38, B-39, and B-40) (Figure 4) by Fisch Environmental. Soil samples and grab groundwater samples were collected from each of the borings, except B-34. No samples were collected from B-34 as a near-surface product line was hit in this boring. Borings that were proposed in the work plan, but were not drilled, were not drilled for two (2) primary reasons. Product line encountered during the investigation was not on any as-built diagram nor in HCDEH records; hence, some onsite borings were cancelled due to safety concerns, and other borings were cancelled or modified at the request of the Underground Storage Tank Cleanup Fund (USTCF) to focus the investigation on known releases not suspected releases from UST system. Borings which were cancelled due to safety concerns may be drilled at a later date when accurate as-built diagram can be obtained.

4.1 Soil Collection Procedures

All soil borings were drilled by Fisch Environmental, using a truck mounted direct-push Geoprobe drilling rig. Forty eight (48) soil samples were collected at four foot intervals from the fourteen continuous-core borings that were drilled to various depths ranging from eight (8) feet bgs to 30 feet bgs. All soil samples were visually inspected in the field, described, and subjected to field screening using headspace analysis using a portable organic vapor analyzer (OVA) with a PID detector. The OVA analysis was conducted by half filling a sealable plastic bag with a

portion of the soil sample, allowing any vapors to collect in the bags headspace, and after a minimum of five (5) minutes inserting the OVA probe into the bag's headspace for analysis. All OVA readings are included on the borehole logs, included as Appendix A. All soil samples were also inspected and documented by the field geologist for soil type and conditions following the Unified Soil Classification guidelines. The resulting borehole logs are included as Appendix A

Soil samples were collected primarily at four-foot intervals throughout the complete length of each boring. The samples were collected in appropriate containers, labeled for analysis, placed in coolers, and kept at approximately four degrees Celsius. All samples were transported to Basic Laboratory of Redding, California for laboratory analysis under appropriate chain-of-custody documentation.

4.2 Soil Sampling and Analysis Methods

All soil samples were collected following standard EPA guidelines and analyzed for TPHg, BTXE, five fuel oxygenates, and lead scavengers by **EPA Method 8015/8260B**, and for TPHd and TPHmo by **EPA Method 8015** with silica gel cleanup. All analyses were conducted by Basic Laboratory (Basic) of Redding, California (ELAP #1677) on a normal turnaround basis.

4.3 Groundwater Collection and Sampling Procedures

Groundwater samples were collected from all boreholes for laboratory analysis, except boring B-34 (Figure 4), with either a depth discrete sampler with a stainless steel screen, or from a temporary well point.

In borings where only a single groundwater sample was collected, a temporary well point was installed in the soil boring to the sampling depth. The temporary well point was constructed of small diameter PVC piping, with an approximate five foot long section of 0.020" screen at the bottom. A dedicated bailer was lowered down to groundwater for sample collection. Following the collection of the groundwater sample, the well point was removed, and the boring was backfilled with a hydrated bentonite chips. This process was conducted in eleven of the fourteen

boreholes with samples being collected at depths between four and six feet bgs.

At locations where more than one grab groundwater sample was collected, standard geoprobe sampling was conducted. The geoprobe hollow rod was advanced to the selected sampling depth, where the outer portion of the rod was pulled back exposing a stainless steel screen, through which the groundwater at that depth entered the screen pipe. Tubing, with a "waterra" check valve would be inserted down the rod. By simple 'jiggling' of the tube water entered the hosing and moved up to the surface until adequate sample volume was collected. Following the collection of the sample, the rod and screen were removed, decontaminated, and the process was repeated at a selected deeper depth. At the Site, the repeated process was conducted in three borings (B-22, B-37, and B-39). In each of these borings, the process was only repeated once after the initial sampling. Samples in borings B-22, B-37, and B-39 were collected at depths of 10 feet and 20 feet bgs in boring B-22, and five (5) feet and 24 feet in borings B-37 and B-39. Following the collection of the groundwater sample, the geoprobe rods were removed, and the boring was backfilled with a hydrated bentonite chips.

All grab groundwater samples that were collected were stored in appropriate VOA vials and amber bottles, placed in coolers and maintained at approximately four degrees Celsius, for transportation under appropriate chain-of-custody documentation to Basic Labs for analysis. All analysis were conducted by Basic (ELAP #1677) on a normal turnaround basis.

4.4 Groundwater Analysis

The groundwater samples from each borehole were analyzed for TPHg, BTXE, five fuel oxygenates, and lead scavengers using **EPA Method 8015/8260B**, and TPHd and TPHmo by **EPA Method 8015** with a silica gel cleanup. All laboratory analyses were conducted by Basic on a normal turnaround basis.

5.0 RESULTS

5.1 Soil Analytical Results

Laboratory analysis determined that petroleum hydrocarbons contamination in the soils was minimal, with petroleum hydrocarbons of any type only being reported in 23 of the 48 samples analyzed. TPHg was reported in four (4) samples, with a maximum of 3.2 ppm (B-29 @ 2') being reported. Seven samples reported the presence of one or more of the BTXE compounds, with benzene reported in two (2) samples at a maximum of 0.037 ppm (B-29 @ 12'), toluene in three (3) samples at a maximum of 0.012 ppm (B-38 @ 4'), xylenes in two (2) samples at a maximum of 0.241 ppm (B-22 @ 10'), and ethylbenzene in two (2) samples at a maximum of 0.016 ppm (B-22 @ 10'). Of the fuel oxygenates, MTBE was reported in 14 samples at a maximum of 0.33 ppm (B-30 @ 5'), and TAME was reported in three (3) samples at a maximum of 0.074 ppm (B-30 @ 2'). TPHd was the most common contaminant reported, being reported in 17 of the 48 samples. With the exception of two (2) samples (B-39 @ 20' reported 90 ppm and B39 @ 10' reported 18 ppm), all TPHd results were below six ppm. TPHmo were detected in six (6) samples at a maximum of 51 ppm (B-33 @ 2'). A summary of the soil analytical results are displayed in Table 3 and graphically depicted in Figure 5. The laboratory report is included as Appendix B.

5.2 Groundwater Analytical Results

Seventeen (17) grab groundwater samples were subject to laboratory analysis. This included single samples from nine of the borings (B-19, B-21, B-23, B-25, B-27, B-28, B-29, B-30, B-33, B-38, and B-40), and two samples from various depths from borings B-22, B-37, and B-39. TPHg was reported in all the borings except B-21, B-23, B-37, B-38, and B-39. The highest TPHg concentrations were reported in boreholes B-22 (23,000 ppb in B22 @ 10' and 5,800 ppb in B-22 @ 15'), B-29 (3,400 ppb in B-29 @ 6'), and B-30 (2,700 ppb in B-30 @ 30"). The BTXE compounds were generally reported in the same samples that reported TPHg, with the

exception of sample B-23 that reported low levels of toluene (0.79 ppb) and xylenes (0.58 ppb), and the sample from B-40, which reported TPHg but was absent of any BTXE. MTBE was reported in twelve of the samples, which included the ten samples that reported TPHg, plus the sample from B-38 and the shallow sample from boring B-39. The highest MTBE concentrations were from borings B-29 and B-30, where both samples reported 3,300 ppb. Other reported fuel oxygenates included TAME (ten samples), ETBE (three samples), and TBA (seven samples). Of the long chained petroleum hydrocarbons, TPHd was reported in ten samples at concentrations ranging from 61 ppb (B-37 @ 24') to 210 ppb (B-23 @ 9'). TPHmo was reported in all the samples, except the two samples from boring B-37, at concentrations that ranged from 190 ppb (B-38 @ 6') to 20,000 ppb (B-19 @ 5'). The results of the groundwater analyses are summarized in Table 2 and graphically depicted in Figure 6. The laboratory reported is included as Appendix B.

6.0 SENSITIVE RECEPTOR SURVEY

A sensitive receptor survey (SRS) is currently being scheduled for this site and should be conducted by August 2006. The SRS will identify nearby water supply wells, drainage, channels, lakes, and other potential sensitive receptors.

7.0 EMERGENY RESPONSE

During the drilling B-34, a product line that had not been mapped was inadvertently damaged during this investigation. To minimize any environmental damage, the resulting release was cleaned up immediately. The released resulted in some soils, immediately adjacent to the piping to be contaminated. The impacted soils were removed as soon as possible, and contained in six 55 gallon drums of soil that were transported to Bio Industries in Red Bluff, California for disposal. Although, groundwater in the area was already contaminated, approximately 12,000-gallons of groundwater was extracted from the pit created by the excavation of the soil, and disposed of under permit at the Eureka waste water treatment plant.

8.0 SITE CONCEPTUAL MODEL

The objective of a site conceptual model is to present sufficient information to: (1) identify the source(s) of the contamination; (2) determine the nature and extent of the contamination; (3) specify potential exposure pathways; and (4) identify potential receptors that may be adversely impacted by the contamination.

The Big Foot Gas site is predominantly underlain by interbedded sandy and silty soils. Groundwater is very shallow, commonly less than five feet bgs, and occasionally less than one foot bgs. Groundwater contamination is widespread, with the identified sources of the impacted groundwater being the gasoline UST and product lines which were removed 1991. The gasoline contamination appears to have migrated from the UST and the product lines resulting in localized impact to shallow groundwater beneath the current dispenser and in the vicinity of the former UST. Geological cross sections of the Site are shown in Figures 7 and 8.

Since 1995, when the first subsurface investigation was conducted, a total of 92 soil samples have been collected and analyzed from 35 borings at the Site. In addition, twelve (12) soil samples were collected that were associated with the removal of the former USTs and their associated lines. All twelve soil samples directly associated with the USTs reported the presence of TPHg, with four samples reporting levels in excess of 100 ppm. The highest concentration was reported in a sample collected adjacent to the product line directly west of the onsite building, where 5,000 ppm was reported. From the borings, only fourteen soil samples have reported TPHg, of which only four samples reported levels greater than 100 ppm. Three of these samples were located in the area of the former premium UST at the southeast corner of the Site's main building. The fourth sample was collected near the east dispenser island and it's product lines. All four samples were collected at shallow depths that ranged from 0.5 feet to 5.5 feet bgs. It is therefore concluded that with these results and the Site's shallow depth to groundwater that the extent of soil contamination is minimal.

There are six (6) groundwater monitoring wells at the Site which have been subjected to sixteen rounds of groundwater monitoring. In addition, grab groundwater samples have been collected from 29 borings, of which three had samples collected at different vertical depths to evaluate the vertical migration of the contamination. Further samples were collected from the UST removal excavations and from test pit excavated prior to the installation of the Site's current USTs. Significantly elevated contaminant levels (TPHg at 320,000 ppb) were reported from the premium UST pit following its removal. Laboratory analysis of the groundwater from the monitoring wells has consistently reported TPHg, BTXE, and MTBE in all the wells, except well MW-1, in the northeast corner of the service station. The highest levels of contamination have consistently been reported in well MW-5, which is in the southeast corner of the Site, in the area of the former gasoline UST system and MW-4, near the Site's product lines. Groundwater contamination has also consistently been reported in wells MW-3 and MW-6, both on the Site's western property boundary. The presence of contamination in these wells, along with the presence of petroleum hydrocarbons in the recent grab samples from borings on the west side of Central Avenue (B-40 reported TPHg at 130 ppb) indicates that the contamination has migrated offsite and is present beneath Central Avenue. Analysis of the grab groundwater samples has also identified the presence of groundwater throughout the whole of the southern portion of the Site from the site of the former UST (B-22 @ 10', reported TPHg at 23,000 ppb). In addition, groundwater contamination was identified in the vicinity of the dispensers in boring B-29 (TPHg at 3,400 ppb) to the east of the dispensers and B-30 (TPHg at 2,700 ppb) to the west of the dispensers. The BTXE compounds and the fuel oxygenates are found in the same area as the TPHg, although levels of MTBE appear to be greater in the area of the dispensers and the northern portion of the Site. The lateral extents of TPHg and MTBE are shown in Figures 9 and 10.

The extent of any vertical migration of contamination is unknown. To date only three locations have been subject to multi-depth sampling. Of these sites, two (B-37 and B-39) were offsite, on the west side of Central Avenue. At both locations no contamination of concern was identified. However, the third location (B-22) had elevated concentrations at multiple depths (23,000 ppb and 5,800 ppb of TPHg at ten feet and 15 feet, respectively), indicating that some vertical migration has occurred.

There are no known potential sensitive receptors onsite. However, drainage ditches are present on both sides of Central Avenue, and a wetland-like area "not officially characterized", is present beyond the drainage ditch on the west side of Central Avenue. With the shallow depth to groundwater, and the known groundwater flow direction, there is the potential of these features being impacted. Other potential sensitive receptors may be present but are currently unknown, but will be identified during the scheduled SRS.

9.0 REMEDIAL ALTERNATIVES

9.1 Remedial Introduction and Methods

This section presents a review of remedial alternatives that may be applicable to the Site to meet the Site's remedial objectives. The alternatives were developed based upon proven technologies, engineering judgments, and professional experience.

Subsurface evaluations at the Site have determined that soil contamination at the Site is minimal, with the majority of the soil contamination being removed during the removal of the UST. However, groundwater contaminated with petroleum hydrocarbons is widespread across the Site, and appears to have migrated offsite, reaching the west side of Central Avenue. It is therefore proposed to apply active remediation to the soil/groundwater interface, allowing any remaining soil contamination to be addressed by groundwater flushing of the soils and natural attenuation.

A factor in the consideration of any remedial action will be site constraints, at the Big Foot Gas facility. These include:

- Active UST system and the associated piping.
- Public thoroughfares (Central Avenue).
- Drainage ditches running either side of Central Avenue.
- Underground Utilities.

The following four (4) potential remedial action alternatives are being considered:

- 1. Pump and Treat, with disposal to the sanitary sewer.
- 2. Air Sparing.
- 3. Hydrogen Peroxide Injection.
- 4. No Action, with Monitoring.

Any active remediation would be conducted until remedial objectives have been met or until it was shown the remedial action was no longer practical. Following the remedial action, groundwater monitoring would be conducted for a minimum of one (1) year.

9.1.1 Alternative 1: Pump and Treat

Under Alternative 1, a pump and treat system (PTS) would be installed to address the groundwater contamination, which would also assist in flushing the soils of any residual contamination. The PTS would consist of one (1) horizontal well in a trench along the western boundary of the Site, and perpendicular to the direction of groundwater flow. The well would be constructed of large diameter perforated drain pipe, surrounded with pea gravel within an eight (8) foot deep trench. The well and trench would be graded towards a sump which would be located at one end of the well/trench. Groundwater would be pumped from the well/trench into a holding tank, where any free product would be allowed to separate and could be removed, after which any contaminants would be separated, into the vapor phase, from the extracted groundwater with an air stripper. The resulting vapors if warranted would be treated prior to being discharged to the atmosphere. The treated groundwater would be polished with granular activated carbon (GAC) and discharged into the onsite sanitary sewer. Based upon extracted contaminant levels it may be possible to treat the groundwater with GAC only, or if post air stripper concentrations are considered low enough, GAC polishing may not be required. An enclosure would be constructed to house the holding tank and other treatment equipment protecting both the public and the equipment itself. Outside of the enclosure all piping from the well and to the sanitary sewer would be underground.

This system would provide hydraulic control at the Site which in true would minimize the spread of contamination migrating offsite, but would likely have minimal effect on the contamination that has already migrated past the Site's western boundary, particularly, the contamination identified on the west side of Central Avenue. This contamination is generally deep and is generally inaccessible, except at extreme cost. However, it would be subject to natural attenuation.

9.1.2 Alternative 2: Bio-Sparging

Alternative 2 would require the installation of a sparging system across the contaminate plume. Biosparging is an in-situ remedial technology that uses indigenous microorganisms to enhance the biodegradation of the contamination. Sparge wells would be installed throughout the area of the plume on a grid pattern on 20 feet centers, which would allow the injection of oxygen-rich air, i.e. ozone. Based on this spacing and the area of the plume, a total of 22 onsite sparge wells would be required, plus another three (3) on the west side of Central Avenue, if feasible. The sparge wells would be constructed in a manner that would allow oxygen-rich air to be sparged, along with nutrients if required, into the groundwater. The injected oxygen-rich air would oxidizes the hydrocarbon contamination in the groundwater and the capillary fridge, and enhance the biodegradation of the contamination. The injection would be conducted with an automatic system onsite; however, any sparge wells on the west side of Central would likely require manual injection.

The location of Central Avenue will not allow the placement of any wells, hence the groundwater contamination beneath the road would not be addressed, although it would be subject to the normal natural attenuation processes. Additionally, the presence of shallow groundwater would require any injection to be conducted at relative low pressures, so not to cause any mounding of the groundwater which could affect the surface paving and any underground utilities, including the current USTs and the associated piping. The shallow groundwater would also prevent any vapor extraction. Prior to installing any biosparging system a pilot test would be required to determine the feasibility of biosparging. This would include

determining the groundwater chemistry and if indigenous bacteria and adequate nutrients are present.

9.1.3 Alternative 3: Chemical Oxidization/Injection

Alternative 3 involves the injection of an oxidizing material, i.e. hydrogen peroxide, sodium persulfate, in the hydrocarbon contaminated groundwater which converts the petroleum hydrocarbons to carbon dioxide and water, and hence reduces their concentration in the groundwater. Another bi-product may be oxygen, which would enhance the biodegradation of the contamination. This process can often achieve remedial objectives in a relatively short time frame, but at a high financial cost. Injection wells would be installed throughout the area of the plume on a grid pattern on 15 feet centers, to allow the injection of the chemical oxidizer. The actual spacing may need to be altered based on the chemical oxidizer being used. Based on this spacing and the area of the plume approximately 30 onsite injection wells would be required, plus another four on the west side of Central Avenue, if feasible. In addition, injection may be possible along Central Avenue, with approval from traffic agencies. The injection wells would be constructed in a manner that would allow an oxidizing chemical, normally in liquid form, to be repeatedly injected into the groundwater. The injection would be conducted with an automatic system onsite; however, any injection wells on the west side of Central would likely require manual injection.

The location of Central Avenue will not allow the placement of any wells hence the groundwater contamination beneath the road would not be addressed, although it would be subject to the normal natural attenuation processes. Additionally, the presence of the shallow groundwater would require any injections of the oxidizer to be conducted in low concentrations to control the reaction and possible near surface off-gassing of explosive gases, and at relative low pressures, to minimize mounding of the groundwater which could affect the surface paving and any underground utilities, including the current USTs and the associated piping. The shallow groundwater would also minimize the potential for vapor extraction. Prior to installing any chemical oxidizing system, a pilot test would be conducted to determine the feasibility of the process and groundwater quality, i.e. pH.

9.1.4 Alternative 4: No Action with Monitored Natural Attenuation

Alternative 4 would not involve any active groundwater remediation, but relies on passive natural attenuation processes to achieve the Site-specific remediation objective. The current groundwater monitoring program would be continued, but would include monitoring for parameters such as: Dissolved Oxygen (DO), Dissolved Carbon Dioxide (DCO2), and Oxidization-Reduction Potential (ORP). DO, DCO@, and ORP are all monitoring parameters of bioremediation. This alternative is low cost, but conducted on a long-term basic, i.e. years.

9.2 Analysis of Remedial Alternatives

This section evaluates the various remedial alternatives that meet the remedial objectives. The remedial objectives are to reduce the levels of petroleum hydrocarbons in the groundwater to levels that meet the regions "Water Quality Objectives". This may be drinking water standards or levels than eliminate the potential of environmental liability, i.e. impacting a drinking water well or creek.

9.2.1 Screening Criteria

The remedial alternatives are evaluated in accordance with established criteria that includes:

- Regulatory compliance: does it address the requirements of HCDEH and the RWQCB.
- Long Term Effectiveness: meets long term remedial goals.
- Provides sufficient overall protection to human health and the environment.
- Reduction in toxicity, mobility, and concentration.
- Schedule: Can the work be implemented and remedial goals be met in an acceptable time frame.
- Cost: Is the cost (capital and operational) reasonable to meet the goals of the remediation.

Each of the remedial alternatives are ranked according to these criteria, with the most favorable or best alternative being assigned a value of four (4), and the least favorable alternative being assigned a value of zero (0).

9.2.2 Evaluation of Alternative based on Screening Criteria

9.2.2.1 Regulatory Compliance

The lead regulatory agency, HCDEH, is requiring that that corrective action be implemented at the Site. Alternatives 1, 2, and 3, will meet that requirement; however, Alternative 4 is not particularly efficient at meeting the objective. Therefore Alternatives 1, 2, and 3, are given a value of 3, whereas Alternative 4 is assigned a value of zero (0).

9.2.2.2 Effectiveness

Alternative 1 is considered effective as it would remove the groundwater contamination and it would provide a barrier which would prevent further offsite migration of any contamination. However, it would not address the majority of the contaminations that has already migrated offsite and is present beneath and on the west side of Central Avenue. Therefore Alternative 1 has been given a value of 2.

Alternative 2 (Bio Slurping) is considered to be effective as it would significant increase the volume of oxygen and nutrients in the subsurface which would enhance biodegradation of the contamination. In addition, some oxidization of the contamination would occur. Although, the contamination beneath Central Avenue, would not be directly addressed, manual injection, may allow treatment of the contamination and provide a barrier to further migration on the west side of Central Avenue. Therefore Alternative 2 has been given a value of 3.

Alternative 3 (ISCO) is considered to be effective as it has the potential to accelerate the groundwater remediation by the rapid oxidation of any hydrocarbon contamination. Although, the contamination beneath Central Avenue, would not be addressed, manual injection, may allow

treatment of the contamination and provide a barrier to further migration on the west side of Central Avenue. Therefore Alternative 3 has been given a value of three (3).

Alternative 4 (MNA) ongoing monitoring has shown some general reduction in the levels of petroleum hydrocarbons in the groundwater, however, it indicates that Alternative 4 is not quickly effective in the removal of contamination or enhancing bioremediation. Therefore Alternative 4 has been given a value of one (1).

9.2.2.3 Overall Protection

Alternatives 1, 2, and 3 will all treat the groundwater beneath the Site, with Alternative 1 involving external treatment, whereas Alternative 2 and 3, would conduct the remediation insitu. However, only Alternatives 2 and 3 could efficiently treat the offsite groundwater contamination. Due to the extraction of the groundwater, and aboveground storage and treatment, there would be some potential exposure, however, it would likely be minimal. Alternatives 2 and 3 would have some minimal exposure during the during sparge/injection well installation, although greater exposure will occur during the operation of the alternatives, i.e. handling and injection of chemicals. Alternative 4 provides no protection from the continued migrations of contaminants off the Site and on to adjacent properties other than natural attenuation, unless it comes in contact with a sensitive receptor when there is no increase to the current level of protection. Therefore, Alternative 1 has been given a value of two (2), Alternatives 2 and 3 have both been given a value of 2.5, and Alternative 4 has been given a value of 1.

9.2.2.4 Contamination Reduction

Alternatives 1, 2, and 3, would all reduce the levels of petroleum hydrocarbons in the groundwater. However, only Alternatives 2 and 3 could be utilized offsite and address the contamination on the west side of Central Avenue. Alternative 4 will not reduce toxicity, volume, or mobility of contaminants except by natural attenuation. Therefore, Alternative 1 has been given a value of 2, Alternatives 2 and 3 have both been given a value of 3, and Alternative

4 has been given a value of zero (0).

9.2.2.5 Implementation

Alternatives 2 and 3 will likely be the most difficult to implement, due to permitting, capital equipment requirements, and training associated with the handling of chemicals. Alternative 1 would be easier to implement as no offsite activities are involved. Once the system is in-place, both Alternatives 1 and 2 would require an ongoing Operation and Maintenance program. Initially Alternative 3 would require an increased sampling regiment but after a few months reinjection would be evaluated. Additionally, alternative 3 would not require extensive long term O&M. Alternative 4 would be the easiest to implement due to no activities are required than the ongoing groundwater monitoring. Therefore Alternatives 1, 2, and 3, are assigned values of 3, 2, and 2, respectively, and Alternative 4 is assigned a 3.5

9.2.2.6 Schedule

Alternative 4 is currently ongoing, and hence would require the least amount of time to implement, although with this alternative groundwater monitoring and reporting could be conducted indefinitely. As a result, Alternative 4 has been given a value of one (1). Alternative 1, 2, and 3 would take approximately six months to permit, rent or purchase capital equipment, install, and implant. In addition, pilot tests would be required for Alternative 2 and 3, prior to starting the formal permitting. Until a system starts to operate and some base monitoring is conducted it is difficult to estimate the operation time to completion. However, based on general experience, it is possible that onsite treatment by Alternatives 1 and 2 could be completed in two (2) to three (3) years, whereas Alternative 3 would likely be completed within weeks or months. Alternatives 1, 2, and 3, would all require a minimum of one year of groundwater monitoring, once the treatment has been completed.

9.2.2.7 Cost

The Table below summarizes the estimated capital and O&M costs to implement, maintain, and operate each of the Alternatives. In addition to these costs, Alternatives 1, 2, and 3 would

require one year of groundwater monitoring once remedial objectives have been met.

Alternative	Method	Duration	Cost	Score
		(Years)	(Estimates)	
1	Pump and Treat	2 - 3	\$ 180,000.00	2
2	Biosparging	2 - 3	\$ 250,000.00	1.5
3	Chemical Oxidation	0.5	\$ 200,000.00	2
4	No Action with Monitored Natural Attenuation	10 +	\$ 80,000.00	3

9.3 Proposed Remedial Alternative

A summary of all the scores is presented in the table on the following page. Alternatives 1, 2, and 3, all meet the regulatory compliance criteria. Alternative 1, would only be able to address the contamination currently onsite. Although a review of groundwater monitoring data indicates some natural attenuation, Alternative 4 would require an extended period of time and the ongoing groundwater monitoring does not indicate a acceptable rate of natural attenuation. Alternatives 2 and 3 would both address the contamination, and can be applied to the offsite contamination with minimal impact; however, Alternative 2 would likely require more time, and hence result in a higher total cost. Based on these facts and the overall score, as presented in the table, Alternative 3 is the choice alternative.

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Criteria	Pump and Treat	Biosparging	Chemical Oxidation	No Action w/Monitoring
Regulatory Compliance	3	3	3	0
Effectiveness	2	3	3	1
Overall Protection	2	2.5	2.5	1
Contamination Reduction	2	2.5	3	0
Implementation	2.5	2	2	3.5
Schedule	2	2	3	1
Cost	2	1.5	2	3
Overall Score	15.5	16.5	18.5	9.5

Alternative 3, Chemical Oxidation, is a proven technology for the degradation of petroleum hydrocarbons, and is ranked to be the most effective option overall. SounPacific proposes that Chemical Oxidation be implemented with continued groundwater monitoring of all existing wells, plus an additional well on the west side of Central Avenue. However, prior to any full scale implementation a pilot test would be need to be conducted.

9.4 Schedule

Within eight (8) weeks of approval of the Corrective Action Plan (CAP), SounPacific will prepare a Pilot Test Work Plan. Once approved, the pilot test will be implemented within six (6) weeks, providing the availability of equipment. On the assumption that the pilot test will be successful, a Remedial Action Plan will be prepared which documents a detailed design of the proposed remediation and the monitoring that will occur to document the corrective action of the groundwater.

10.0 SUMMARY AND RECOMMENDATIONS

The following is a summary of the findings presented in the ROF and the CAP:

- Soil analytical results from this investigation indicate that no remaining significant impact from the USTs removed in 1991 has been detected. Groundwater, which is very shallow, is impacted and is detected throughout much of the Site (Figures 7 and 8), and has migrated to the west beneath Central Avenue.
- The levels of groundwater contamination, which includes TPHg, BTXE, and MTBE, are elevated enough to require active remedial action. No remedial action, other than natural attenuation, is currently proposed to address the minimal volume of soil contamination that has been identified in the vadose zone.
- Various active remedial alternatives for the treatment of groundwater were evaluated. Based on the review, it has been determined that chemical oxidization will likely be the most suited to remediate the contaminated groundwater at the Big Foot site. However, prior to implementing any system, a pilot test for the treatment would be conducted at the Site to confirm its suitability.

SounPacific recommends the following items to be incorporated into future proposed work:

• To allow for the future delineation and monitoring of the groundwater, additional monitoring wells should be considered. These would include wells in the following areas: along the Site's southern boundary, between MW-5 and MW-6; in the area of recent borings B-25 and B-29, to monitor the elevated contamination recently identified: and a well on the west side of Central Avenue to monitor contaminant levels, contaminant migration, and future remedial progress. Additional wells may be considered.

- All future analysis at the Site should be confined to TPHg, BTEX, and MTBE. These
 analytes have been identified as having originated from USTs removed from the Site in
 1991.
- Conduct further investigation of the possible vertical migration of contaminants. To date only one boring (B-22) has been drilled and sampled to evaluate the vertical migration of contaminants. This will likely involve approximately four (4) borings with multi-depth sampling of soil and/or groundwater. Two (2) offsite borings did not identify any vertical migration.
- Review the data collected from the recently conducted Sensitive Receptor Survey, to determine if there are any offsite locations which have the potential of being impacted by the migrating contamination.
- Preparation of a Work Plan to conduct a pilot test to evaluate the effectiveness of chemical oxidation as the remedial alternative of choice and if successful, the preparation and implementation of a Remedial Action Plan.

CERTIFICATION

This report was prepared under the direct supervision of a California registered geologist at SounPacific. All information provided in this report including statements, conclusions and recommendations are based solely upon field observations and analyses performed by a state-certified laboratory. SounPacific is not responsible for laboratory errors.

SounPacific promises to perform all its work in a manner that is currently used by members in similar professions working in the same geographic area. SounPacific will do whatever is reasonable to ensure that data collection is accurate. Please note however, that rain, buried utilities, and other factors can influence groundwater depths, directions and other factors beyond what SounPacific could reasonably determine.

No. 07994

SounPacific

Prepared by:

Greg Soumein, REA # 07994

Project Manager

Reviewed by:

Michael Sellens, RG # 4714, REA # 0789

Principal Geologist

Tables

Table 1 Water Levels

Big Foot Gas 2801 Central Avenue McKinleyville, California 95519

Sample Location	Date	Depth to Bottom/ Feet BGS	Survey Height/ Feet AMSL	Depth to Water/ Feet BGS	Adjusted Elevation/ Feet AMSL
	5/1/2002	11.66	111.57	1.54	110.03
	5/30/2002	11.67	111.57	2.43	109.14
	7/3/2002	11.63	111.57	2.65	108.92
	8/3/2002	11.62	111.57	3.40	108.17
	9/4/2002	11.64	111.57	3.90	107.67
	10/4/2002	11.70	111.57	4.25	107.32
	11/4/2002	11.65	111.57	4.36	107.21
	12/2/2002	12.63	111.57	3.61	107.96
	1/6/2003	11.66	111.57	1.22	110.35
	2/5/2003	11.67	111.57	1.31	110.26
	3/7/2003	11.67	111.57	1.67	109.90
MW-1	4/8/2003	11.67	111.57	1.00	110.57
IVI VV - I	5/12/2003	11.67	111.57	1.32	110.25
	8/2/2003	11.88	111.57	3.11	108.46
	11/8/2003	11.88	111.57	2.57	109.00
	2/5/2004	11.88	111.57	1.21	110.36
	5/4/2004	11.88	111.57	2.03	109.54
	8/9/2004	11.82	111.57	3.71	107.86
	11/5/2004	11.83	111.57	2.08	109.49
	2/6/2005	11.83	111.57	1.65	109.92
	5/13/2005	11.81	111.57	1.32	110.25
	8/9/2005	11.90	111.57	2.90	108.67
	11/9/2005	11.81	111.57	1.20	110.37
	3/8/2006	11.88	111.57	0.83	110.74
	5/1/2002	12.00	113.03	2.75	110.28
	5/30/2002	11.85	113.03	3.63	109.40
	7/3/2002	11.87	113.03	4.20	108.83
	8/3/2002	11.87	113.03	4.68	108.35
	9/4/2002	11.87	113.03	5.22	107.81
	10/4/2002	9.71	113.03	5.64	107.39
	11/4/2002	11.82	113.03	5.67	107.36
	12/2/2002	11.83	113.03	4.83	108.20
	1/6/2003	11.86	113.03	2.46	110.57
	2/5/2003	10.22	113.03	2.52	110.51
	3/7/2003	11.72	113.03	2.71	110.32
MW-2	4/8/2003	11.72	113.03	2.22	110.81
141 44 -7	5/12/2003	11.72	113.03	2.53	110.50
	8/2/2003	11.98	113.03	4.31	108.72
	11/8/2003	11.98	113.03	3.95	109.08
	2/5/2004	11.98	113.03	2.44	110.59
	5/4/2004	11.98	113.03	3.24	109.79
l	8/9/2004	11.97	113.03	5.07	107.96
	11/5/2004	12.04	113.03	3.26	109.77
	2/6/2005	12.04	113.03	2.79	110.24
	5/13/2005	9.12	113.03	2.57	110.46
	8/9/2005	9.14	113.03	4.16	108.87
	11/9/2005	11.97	113.03	2.57	110.46
	3/8/2006	9.13	113.03	2.15	110.88

Table 1 (cont.) Water Levels

Big Foot Gas 2801 Central Avenue McKinleyville, California 95519

Sample Location	Date	Depth to Bottom/ Feet BGS	Survey Height/ Feet AMSL	Depth to Water/ Feet BGS	Adjusted Elevation/ Feet AMSL
	5/1/2002	11.39	112.13	2.15	109.98
	5/30/2002	11.24	112.13	2.94	109.19
	7/3/2002	11.25	112.13	3.41	108.72
	8/3/2002	11.24	112.13	3.84	108.29
	9/4/2002	11.21	112.13	4.32	107.81
	10/4/2002	11.22	112.13	4.69	107.44
	11/4/2002	11.22	112.13	4.83	107.30
	12/2/2002	11.23	112.13	4.02	108.11
	1/6/2003	11.25	112.13	1.91	110.22
	2/5/2003	11.25	112.13	2.00	110.13
	3/7/2003	11.29	112.13	2.30	109.83
MW-3	4/8/2003	11.29	112.13	1.69	110.44
M W - 3	5/12/2003	11.29	112.13	1.99	110.14
	8/2/2003	11.46	112.13	3.57	108.56
	11/8/2003	11.46	112.13	3.00	109.13
	2/5/2004	11.46	112.13	1.91	110.22
	5/4/2004	11.46	112.13	2.61	109.52
	8/9/2004	11.46	112.13	4.14	107.99
	11/5/2004	11.40	112.13	2.67	109.46
	2/6/2005	11.40	112.13	2.30	109.83
	5/13/2005	11.42	112.13	1.98	110.15
	8/9/2005	11.50	112.13	3.40	108.73
	11/9/2005	11.40	112.13	1.95	110.18
	3/8/2006	11.67	112.13	1.55	110.58
	5/1/2002	11.34	112.76	2.44	110.32
	5/30/2002	11.14	112.76	3.28	109.48
	7/3/2002	11.11	112.76	3.84	108.92
	8/3/2002	11.14	112.76	4.32	108.44
	9/4/2002	11.12	112.76	4.86	107.90
	10/4/2002	11.12	112.76	5.24	107.52
	11/4/2002	11.05	112.76	5.36	107.40
	12/2/2002	11.08	112.76	4.51	108.25
	1/6/2003	11.05	112.76	2.04	110.72
	2/5/2003	11.06	112.76	2.17	110.59
	3/7/2003	11.24	112.76	2.51	110.25
MW-4	4/8/2003	11.24	112.76	1.69	111.07
131.11	5/12/2003	11.24	112.76	3.14	109.62
	8/2/2003	11.32	112.76	4.03	108.73
	11/8/2003	11.32	112.76	3.31	109.45
	2/5/2004	11.32	112.76	2.03	110.73
	5/4/2004	11.32	112.76	2.85	109.91
	8/9/2004	11.32	112.76	4.64	108.12
	11/5/2004	11.20	112.76	2.87	109.89
	2/6/2005	11.27	112.76	2.51	110.25
	5/13/2005	11.24	112.76	2.14	110.62
	8/9/2005	11.49	112.76	3.77	108.99
	11/9/2005	11.23	112.76	2.00	110.76
	3/8/2006	12.61	112.76	1.59	111.17

Table 1 (cont.) Water Levels

Big Foot Gas 2801 Central Avenue McKinleyville, California 95519

Sample Location	Date	Depth to Bottom/ Feet BGS	Survey Height/ Feet AMSL	Depth to Water/ Feet BGS	Adjusted Elevation/ Feet AMSL
	5/1/2002	11.10	112.62	1.43	111.19
	5/30/2002	11.11	112.62	2.71	109.91
	7/3/2002	11.12	112.62	3.31	109.31
	8/3/2002	11.14	112.62	3.85	108.77
	9/4/2002	11.12	112.62	4.37	108.25
	10/4/2002	11.15	112.62	4.85	107.77
	11/4/2002	11.15	112.62	4.97	107.65
	12/2/2002	11.13	112.62	4.02	108.60
	1/6/2003	11.15	112.62	1.11	111.51
	2/5/2003	11.18	112.62	1.23	111.39
	3/7/2003	11.15	112.62	1.70	110.92
MW-5	4/8/2003	11.15	112.62	0.95	111.67
11111	5/12/2003	11.15	112.62	1.33	111.29
	8/2/2003	11.36	112.62	3.53	109.09
	11/8/2003	11.36	112.62	2.67	109.95
	2/5/2004	11.36	112.62	1.10	111.52
	5/4/2004	11.36	112.62	2.18	110.44
	8/9/2004	11.35	112.62	4.17	108.45
	11/5/2004	11.34	112.62	2.19	110.43
	2/6/2005	11.32	112.62	1.62	111.00
	5/13/2005	11.30	112.62	1.24	111.38
	8/9/2005	11.20	112.62	3.20	109.42
	11/9/2005	11.30	112.62	0.92	111.70
	3/8/2006	11.47	112.62	0.59	112.03
	5/1/2002	10.92	112.38	2.31	110.07
	5/30/2002	10.91	112.38	3.13	109.25
	7/3/2002	10.91	112.38	3.64	108.74
	8/3/2002	10.92	112.38	4.09	108.29
	9/4/2002	10.93	112.38	4.61	107.77
	10/4/2002	10.96	112.38	4.99	107.39
	11/4/2002	10.92	112.38	5.05	107.33
	12/2/2002	10.93	112.38	4.27	108.11
	1/6/2003	10.93	112.38	2.05	110.33
	2/5/2003	10.95 10.95	112.38 112.38	2.14 2.46	110.24
	3/7/2003			1.82	109.92
MW-6	4/8/2003	10.95 10.95	112.38 112.38	3.12	110.56
	5/12/2003	11.13	112.38	3.12	109.26
	8/2/2003				108.57
	11/8/2003	11.13 11.13	112.38 112.38	3.03 2.07	109.35
	2/5/2004 5/4/2004	11.13	112.38	2.07	110.31 109.63
	8/9/2004	11.13	112.38	4.39	109.63
	11/5/2004	11.18	112.38	2.76	107.99
	2/6/2005	11.03	112.38	2.70	109.62
	5/13/2005	10.95	112.38	2.06	110.32
	8/9/2005	11.00	112.38	3.56	108.82
	11/9/2005	10.95	112.38	1.95	110.43
	3/8/2006	10.93	112.38	1.70	110.43

Notes:

Bgs: Below Ground Surface Amsl: Mean Sea Level

Table 2

Sample ID	Sample Location	Sample Date	TPHg (ppb)	Benzene (ppb)	Toluene (ppb)	Xylenes (ppb)	Ethylbenzene (ppb)	MTBE (ppb)	TAME (ppb)	ETBE (ppb)	TBA (ppb)	TPHd (ppb)	TPHmo (ppb)	TPHs (ppb)	Methanol (ppb)	Ethanol (ppb)
TP-1	Test Pit #1	5/8/1991														
TP-2	Test Pit #2	5/8/1991	ND < 50		ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5								
TP-3	Test Pit #3	5/8/1991												ND < 50		
Premium	Premium	7/11/1991	320,000		54,000	4,800	19,000									
Kerosene	Kerosene	7/11/1991												1,500		
SPBFB-1	B-1	9/20/2000	ND < 50	ND < 0.50	ND < 0.50	2.8	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 5.0				ND < 50	22
SPBFB-2	B-2	9/20/2000	ND < 50	ND < 0.50	ND < 0.50	3.4	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 5.0				ND < 50	70
SPBFB-3	B-3	9/20/2000	ND < 50	ND < 0.50	ND < 0.50	1.2	ND < 0.50	0.54	ND < 0.50	ND < 0.50	ND < 5.0				82	110
SPBFB-6	B-6	9/20/2000	ND < 50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	1.0	ND < 0.50	ND < 0.50	ND < 5.0				ND < 50	ND < 50
SPBFB-7	B-7	9/20/2000	6,400	660	110	440	380	260	4.0	ND < 2.0	67				ND < 200	ND < 20
SPBFB-8	B-8	9/20/2000	140	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	580	85	ND < 0.50	ND < 5.0				ND < 50	ND < 5.0
SPBFB-9	B-9	9/20/2000	ND < 50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	180	9.9	ND < 0.50	26				ND < 50	16
SPBFB-10	B-10	9/20/2000	990	210	3.8	3.2	13	380	ND < 0.50	5.4	7.6				ND < 50	ND < 20
SBGW-11	B-11	4/22/2002	27,300	656	5,440	6,280	715	1,610	255	ND < 0.5	ND < 0.5	1,250	ND < 50			
SBGW-13	B-13	4/22/2002	ND < 50	ND < 0.3	0.5	1.1	ND < 0.3	ND < 2.0	ND < 0.5	ND < 0.5	ND < 50	ND < 50	ND < 50			
SBGW-14	B-14	4/22/2002	165	104	0.6	1	ND < 0.3	ND < 2.0	ND < 0.5	ND < 0.5	ND < 50	ND < 50	ND < 50			
SBGW-15	B-15	4/22/2002	263	ND < 0.3	5.3	24.5	1.8	ND < 2.0	ND < 0.5	ND < 0.5	ND < 50	ND < 50	ND < 50			
SBGW-16	B-16	4/22/2002	ND < 50	ND < 0.3	ND < 0.3	ND < 0.6	ND < 0.3	ND < 2.0	ND < 0.5	ND < 0.5	ND < 50	ND < 50	ND < 50			
SBGW-17	B-17	4/22/2002	ND < 25,000	ND < 150	ND < 150	ND < 300	ND < 150	ND < 1,000	ND < 250	ND < 250	ND < 25,000	298,000	ND < 50			
SBGW-18	B-18	4/22/2002	ND < 50	ND < 0.3	1.0	2.6	ND < 0.3	2.1	ND < 0.5	ND < 0.5	ND < 50	ND < 50	ND < 50			

Table 2 (cont.) Groundwater Analytical Results Big Foot Gas

2801 Central Avenue McKinleyville, California 95519

Sample ID	Sample Location	Sample Date	TPHg (ppb)	Benzene (ppb)	Toluene (ppb)	Xylenes (ppb)	Ethylbenzene (ppb)	MTBE (ppb)	TAME (ppb)	ETBE (ppb)	TBA (ppb)	TPHd (ppb)	TPHmo (ppb)	TPHs (ppb)	Methanol (ppb)	Ethanol (ppb)
B-19 @ 5'	B-19 (1)	2/2/2006	94	ND < 0.50	1.2	0.62	ND < 0.50	73	6.2	ND < 1.0	ND < 10	520	20,000			
B-21 @ 4'	B-21 (1)	2/2/2006	ND < 50	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	ND < 1.0	ND < 1.0	ND < 1.0	ND < 10	280	860			
B-22 @ 10'	B-22 (1)	2/2/2006	23,000	79	120	5,430	870	110	12	1.9	120	97	910			
B-22 @ 15'	B-22 (1)	2/2/2006	5,800	22	41	1,060	180	94	7.5	1.4	65	92	640			
B-23 @ 9'	B-23 (1)	2/3/2006	ND < 50	ND < 0.50	0.79	0.58	ND < 0.50	ND < 1.0	ND < 1.0	ND < 1.0	ND < 10	210	1,500			
B-25 @ 4'	B-25 (1)	2/3/2006	1,200	14	1.1	1.1	ND < 1.0	1,300	1.4	ND < 1.0	43	ND < 500	7,700			
B-27 @ 4.5'	B-27 (1)	2/3/2006	110	0.53	1.0	0.65	ND < 0.50	88	ND < 1.0	ND < 1.0	ND < 10	ND < 500	5,100			
B-28 @ 4'	B-28 (1)	2/3/2006	790	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	500	190	ND < 1.0	170	ND < 500	4,200			
B-29 @ 6'	B-29 (1)	2/3/2006	3,400	360	8.5	6.5	3.1	3,300	4.7	30	250	140	440			
B-30 @ 5'	B-30 (1)	2/3/2006	2,700	9.1	2.5	4.7	0.87	3,300	160	ND < 1.0	270	160	420			
B-33 @ 5.5'	B-33 (1)	2/3/2006	800	22	2.0	14	5.9	170	86	ND < 1.0	34	ND < 500	3,700			
B-37 @ 5'	B-37 (1)	2/9/2006	ND < 50	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	ND < 1.0	ND < 1.0	ND < 1.0	ND < 10	ND < 50	ND < 170			
B-37 @ 24'	B-37 (1)	2/9/2006	ND < 50	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	ND < 1.0	ND < 1.0	ND < 1.0	ND < 10	61	ND < 170			
B-38 @ 6'	B-38 (1)	2/9/2006	ND < 50	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	6.5	2.1	ND < 1.0	ND < 10	84	190			
B-39 @ 5'	B-39 (1)	2/9/2006	ND < 50	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	4.9	ND < 1.0	ND < 1.0	ND < 10	93	3,100			
B-39 @ 24'	B-39 (1)	2/9/2006	ND < 50	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	ND < 1.0	ND < 1.0	ND < 1.0	ND < 10	ND < 50	520			
B-40 @ 6'	B-40 (1)	2/9/2006	130	ND < 0.50	ND < 0.50	ND < 1.0	ND < 0.50	76	27	ND < 1.0	ND < 10	ND < 50	260			

TPHg: Total petroleum hydrocarbons as gasoline

BYTBE: Methyl tertiary buyl ether

TAME: Tertiary amyl methyl ether

EDIPE: Diisopropyl ether

ETHHs: Total petroleum hydrocarbons as solvent

(1) Lead Scavengers EDB, EDC, CB, 2-DCB, 3-DCB, 4-DCB, all ND < 1.0 ppb

ETBE: Ethyl tertiary butyl ether TBA: Tertiary butanol EDB: 1,2-Dibromoethane EDC: 1,2-Dichloroethane 2-DCB: 1,2-Dichlorobenzene

3-DCB: 1,3-Dichlorobenzene
4-DCB: 1,4-Dichlorobenzene
CB: Chlorobenzene
ppb: parts per billion = µg/1 = .001 mg/1 = 0.001 ppm.
ND: Not detected at or below the method detection limit as shown.

Laboratory analytical results for DIPE and dissolved lead were removed from this table to save space.

These constiuents were never reported at or above the laboratory detection limits.

Table 3

Sample ID	Sample Location	Sample Date	TPHg (ppm)	Benzene (ppm)	Toluene (ppm)	Xylenes (ppm)	Ethylbenzene (ppm)	MTBE (ppm)	TAME (ppm)	TPHd (ppm)	TPHmo (ppm)
W-1	BF West #1	6/18/1991	3	ND < 0.005	0.0067	0.049	ND < 0.005				
W-2	BF West #2	6/18/1991	1.6	ND < 0.005	0.0067	0.02	ND < 0.005				
E-1	BF East #1	6/27/1991	130	0.16	0.93	ND < 2.0	ND < 2.0				
E-2	BF East #2	6/27/1991	210	1.9	17	20	3.4				
E-3	BF East #3	6/27/1991	8	0.12	0.15	22	0.057				
S-1	BF South #1	6/27/1991	88	0.062	0.18	0.34	0.065				
PN @ 5'6"	Premium North	7/11/1991	7	0.049	0.0800	0.210	0.074				
PS @ 5'6"	Premium South	7/11/1991	350	ND < 0.50	2.6	12.00	1.5				
S-1 @ 1'6"	South #1	7/11/1991	36	0.0099	0.075	0.15	0.026				
S-3 @ 1'6"	South #3	7/11/1991	5,000	14	280	510	96				
KE @ 6'	Kerosene East	7/11/1991									
KW @ 6'	KeroseneWest	7/11/1991									
B-1 @ 3.5'	B-1	3/22/1995	ND < 1	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005				
B-1 @ 5.5'	B-1	3/22/1995	ND < 1	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005				
SB-1A @ 1.5 '	SB-1	11/7/1995	4,200	ND < 1	49	370	27				
SB-1B @ 3'	SB-1	11/7/1995	5,600	ND < 2	97	590	59				
SB-1C @ 5.5'	SB-1	11/7/1995	2,200	0.91	55	240	24				
SB-2A @ 3'	SB-2	11/7/1995	ND < 1	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005				
SB-2B @ 7.5'	SB-2	11/7/1995	23	0.015	0.014	0.220	0.1200				
SB-3A @ 2'	SB-3	11/7/1995	ND < 0.2	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005			ND < 1	
SB-4A @ 2'	SB-4	11/7/1995	ND < 1	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005			ND < 1	

Table 3 (cont.)

Sample ID	Sample Location	Sample Date	TPHg (ppm)	Benzene (ppm)	Toluene (ppm)	Xylenes (ppm)	Ethylbenzene (ppm)	MTBE (ppm)	TAME (ppm)	TPHd (ppm)	TPHmo (ppm)
SPBFB-1 @ 5'	B-1	9/20/2000	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-1 @ 10'	B-1	9/20/2000	ND < 1.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-2 @ 5'	B-2	9/20/2000	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-2 @ 9'	B-2	9/20/2000	ND < 1.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-3 @ 5'	B-3	9/20/2000	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-3 @ 10'	B-3	9/20/2000	ND < 1.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-5 @ 6"	B-5	9/20/2000	22	ND < 0.0050	0.0096	0.077	0.0090	ND < 0.050		2,900	
SPBFB-6 @ 5'	B-6	9/20/2000	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-6 @ 7'	B-6	9/20/2000	ND < 1.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-7 @ 5'	B-7	9/20/2000	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-7 @ 7.4'	В-7	9/20/2000	ND < 1.0	0.0061	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-8 @ 5'	B-8	9/20/2000	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	0.15			
SPBFB-8 @ 7.5'	B-8	9/20/2000	ND < 1.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-9 @ 10'	B-9	9/20/2000	ND < 1.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SPBFB-10 @ 5'	B-10	9/20/2000	1.1	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-10 @ 6"	B-10	9/20/2000	1,400	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.0050	ND < 0.050			
SPBFB-10 @ 9'	B-10	9/20/2000	ND < 1.0	0.014	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.050			
SB-11 @ 4'	B-11	4/22/2002	2.342	0.068	0.447	0.995	0.116	ND < 0.005	ND < 0.005		
SB-13 @ 4'	B-13	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-13 @ 8'	B-13	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-13 @ 12'	B-13	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-14 @ 4'	B-14	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-14 @ 8'	B-14	4/22/2002	1.99	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-14 @ 12'	B-14	4/22/2002	0.625	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		

Table 3 (cont.)

Sample ID	Sample Location	Sample Date	TPHg (ppm)	Benzene (ppm)	Toluene (ppm)	Xylenes (ppm)	Ethylbenzene (ppm)	MTBE (ppm)	TAME (ppm)	TPHd (ppm)	TPHmo (ppm)
SB-15 @ 4'	B-15	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-15 @ 8'	B-15	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-15 @ 12'	B-15	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-16 @ 4'	B-16	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-16 @ 8'	B-16	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-16 @ 12'	B-16	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-17 @ 4'	B-17	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	0.023	0.023		
SB-17 @ 8'	B-17	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	0.007	0.007		
SB-17 @ 12'	B-17	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-18 @ 4'	B-18	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-18 @ 8'	B-18	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
SB-18 @ 12'	B-18	4/22/2002	ND < 0.060	ND < 0.005	ND < 0.005	ND < 0.015	ND < 0.005	ND < 0.005	ND < 0.005		
B-19 @ 2'	B-19 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.2	ND < 10
B-19 @ 4'	B-19 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 100
B-19 @ 8'	B-19 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-21 @ 4'	B-21 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-22 @ 5'	B-22 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.072	ND < 0.020	4.8	ND < 10
B-22 @ 10'	B-22 (1)	2/2/2006	1.6	ND < 0.0050	ND < 0.0050	0.241	0.016	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-22 @ 15'	B-22 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-22 @ 20'	B-22 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.2	ND < 10
B-22 @ 25'	B-22 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-22 @ 30'	B-22 (1)	2/2/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-23 @ 5'	B-23 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	3.5	11
B-23 @ 8'	B-23 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.3	ND < 10

Table 3 (cont.)

Sample ID	Sample Location	Sample Date	TPHg (ppm)	Benzene (ppm)	Toluene (ppm)	Xylenes (ppm)	Ethylbenzene (ppm)	MTBE (ppm)	TAME (ppm)	TPHd (ppm)	TPHmo (ppm)
B-25 @ 2'	B-25 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.050	ND < 0.020	2.2	ND < 10
B-25 @ 8'	B-25 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.11	ND < 0.020	ND < 1.0	ND < 10
B-25 @ 12'	B-25 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.16	ND < 0.020	ND < 1.0	ND < 10
B-27 @ 2'	B-27 (1)	2/3/2006	1.1	ND < 0.0050	ND < 0.0050	0.054	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-27 @ 4'	B-27 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-27 @ 8'	B-27 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-27 @ 12'	B-27 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-28 @ 2'	B-28 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-28 @ 10'	B-28 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-29 @ 2'	B-29 (1)	2/3/2006	3.2	0.0069	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.038	ND < 0.020	ND < 1.0	ND < 10
B-29 @ 4'	B-29 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.059	ND < 0.020	ND < 1.0	ND < 10
B-29 @ 12'	B-29 (1)	2/3/2006	ND < 1.0	0.037	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.23	ND < 0.020	ND < 1.0	ND < 10
B-30 @ 2'	B-30 (1)	2/3/2006	1.2	ND < 0.0050	ND < 0.0050	ND < 0.0150	0.0056	0.30	0.074	6.0	ND < 10
B-30 @ 5'	B-30 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.33	ND < 0.020	1.5	ND < 10
B-30 @ 10'	B-30 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.074	ND < 0.020	ND < 1.0	ND < 10
B-30 @ 15'	B-30 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-30 @ 20'	B-30 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-30 @ 25'	B-30 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-30 @ 30'	B-30 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-33 @ 2'	B-33 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.3	51
B-33 @ 4'	B-33 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.027	ND < 0.020	ND < 1.0	12
B-33 @ 8'	B-33 (1)	2/3/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	0.037	ND < 0.020	ND < 1.0	ND < 10
B-37 @ 4'	B-37 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.1	ND < 10
B-37 @ 10'	B-37 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	12
B-37 @ 20'	B-37 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10

Table 3 (cont.) **Soil Analytical Results**

Big Foot Gas 2801 Central Avenue McKinleyville, California 95519

Sample ID	Sample Location	Sample Date	TPHg (ppm)	Benzene (ppm)	Toluene (ppm)	Xylenes (ppm)	Ethylbenzene (ppm)	MTBE (ppm)	TAME (ppm)	TPHd (ppm)	TPHmo (ppm)
B-38 @ 4'	B-38 (1)	2/9/2006	ND < 1.0	ND < 0.0050	0.012	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	19
B-38 @ 8'	B-38 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.1	ND < 10
B-38 @ 12'	B-38 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10
B-39 @ 4'	B-39 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.1	ND < 10
B-39 @ 10'	B-39 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	18	ND < 10
B-39 @ 15'	B-39 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	3.5	ND < 10
B-39 @ 20'	B-39 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	90	21
B-40 @ 4'	B-40 (1)	2/9/2006	ND < 1.0	ND < 0.0050	0.0089	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.8	ND < 10
B-40 @ 8'	B-40 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	1.3	ND < 10
B-40 @ 12'	B-40 (1)	2/9/2006	ND < 1.0	ND < 0.0050	ND < 0.0050	ND < 0.0150	ND < 0.0050	ND < 0.025	ND < 0.020	ND < 1.0	ND < 10

ETBE: Ethyl tertiary butyl ether

2-DCB: 1,2-Dichlorobenzene

TBA: Tertiary butanol

EDB: 1,2-Dibromoethane

EDC: 1,2-Dichloroethane

Notes:

TPHg: Total petroleum hydrocarbons as gasoline

MTBE: Methyl tertiary butyl ether TAME: Tertiary amyl methyl ether

DIPE: Diisopropyl ether TPHs: Total petroleum hydrocarbons as solvent

ND: Not detected at or below the method detection limit as shown.

(1) Lead Scavengers EDB & EDC ND < 0.020, CB, 2-DCB, 3-DCB, & 4-DCB ND < 0.0050

Laboratory analytical results for lead and TPHs were removed from this table to save space.

These constiuents were never reported at or above the laboratory detection limits.

3-DCB: 1,3-Dichlorobenzene 4-DCB: 1,4-Dichlorobenzene

CB: Chlorobenzene

ppm: parts per million = $\mu g/g = mg/kg = 1000 \mu g/kg$.

Table 4

Groundwater Analytical Results from Monitoring Wells Big Foot Gas

		Quarter	Sample Date	TPHg (ppb)	Benzene (ppb)	Toluene (ppb)	Xylenes (ppb)	Ethylbenzene (ppb)	MTBE (ppb)	TAME (ppb)	ETBE (ppb)	TBA (ppb)	TPHd (ppb)	TPHmo (ppb)	EDC (ppb)
ŀ	Well Installation	2nd Quarter	5/1/2002	ND < 50	ND < 0.3	0.3	ND < 0.6	ND < 0.3	10.5	ND < 0.5	ND < 0.5	ND < 100	ND < 50	ND < 50	
L	1st Quarterly	3rd Quarter	8/3/2002	91	ND < 0.3	ND < 0.3	ND < 0.6	ND < 0.3	114	7.5	ND < 0.5	ND < 100	ND < 50	ND < 50	
	2nd Quarterly	4th Quarter	11/4/2002	90.4	ND < 0.3	ND < 0.3	ND < 0.6	ND < 0.3	94.7	7.6	ND < 0.5	ND < 50	ND < 50	ND < 50	ND < 0.5
L	3rd Quarterly	1st Quarter	2/5/2003	ND < 50	ND < 0.5	ND < 0.5	ND < 1	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
L	4th Quarterly	2nd Quarter	5/12/2003	ND < 50	ND < 0.5	ND < 0.5	ND < 1	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
L	5th Quarterly	3rd Quarter	8/2/2003	ND < 50	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	23	1.0	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
	6th Quarterly	4th Quarter	11/8/2003	ND < 50	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	88	3.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
MW-1	7th Quarterly	1st Quarter	2/5/2004	ND < 50	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	0.5	ND < 0.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
	8th Quarterly	2nd Quarter	5/4/2004	ND < 50	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	0.5	ND < 0.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
	9th Quarterly	3rd Quarter	8/9/2004	ND < 50	ND < 0.5	ND < 0.5	ND < 1.5	ND < 0.5	34.0	1.2	ND < 0.5	ND < 5.0	160	ND < 500	ND < 0.5
	10th Quarterly	4th Quarter	11/5/2004	ND < 50	ND < 0.5	ND < 0.5	ND < 1.5	ND < 0.5	14	ND < 0.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
	11th Quarterly	1st Quarter	2/6/2005	ND < 50	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	ND < 1.0	ND < 0.5	ND < 0.5	ND < 50.0	ND < 50	ND < 50	
	12th Quarterly	2nd Quarter	5/13/2005	ND < 50	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	ND < 1.0	ND < 0.5	ND < 0.5	ND < 50.0	ND < 50	ND < 50	
[13th Quarterly	3rd Quarter	8/9/2005	ND < 50.0	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	1.6	ND < 0.5	ND < 0.5	ND < 50.0	ND < 50	ND < 50	
	14th Quarterly	4th Quarter	11/9/2005	ND < 50.0	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	12.9	0.5	ND < 0.5	ND < 50.0	ND < 50	ND < 50	
	15th Quarterly	1st Quarter	3/8/2006	ND < 50.0	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	ND < 1.0	ND < 0.5	ND < 0.5	ND < 50.0	ND < 50	ND < 50	
	Well Installation	2nd Quarter	5/1/2002	498	ND < 0.3	ND < 0.3	3.9	1.3	1,380	552	ND < 0.5	ND < 100	ND < 50	ND < 50	
	1st Quarterly	3rd Quarter	8/3/2002	8,870	15.7	0.5	3.9	2.2	8,160	3,460	ND < 0.5	ND < 100	ND < 50	ND < 50	
Ī	2nd Quarterly	4th Quarter	11/4/2002	674	28.3	ND < 0.3	ND < 0.6	ND < 0.3	1,130	526	ND < 0.5	ND < 50	ND < 50	ND < 50	ND < 0.5
Ī	3rd Quarterly	1st Quarter	2/5/2003	1,200	0.5	ND < 0.5	ND < 1	ND < 0.5	1,900	800	4.9	690	ND < 50	ND < 500	ND < 0.5
Ī	4th Quarterly	2nd Quarter	5/12/2003	540	ND < 50	ND < 50	ND < 100	ND < 50	730	140	ND < 50	ND < 500	ND < 50	ND < 500	ND < 50
Ī	5th Quarterly	3rd Quarter	8/2/2003	ND < 5,000	ND < 50	ND < 50	ND < 100	ND < 50	1,200	430	ND < 50	ND < 500	140	ND < 500	ND < 50
Ī	6th Quarterly	4th Quarter	11/8/2003	790	ND < 50	ND < 50	ND < 100	ND < 50	4,200	1,800	ND < 50	ND < 500	150	ND < 500	ND < 50
MW-2	7th Quarterly	1st Quarter	2/5/2004	440	ND < 50	85	120	ND < 50	1,700	860	ND < 50	ND < 500	93	ND < 500	ND < 50
IVI VV - 2	8th Quarterly	2nd Quarter	5/4/2004	1,300	ND < 5.0	ND < 5.0	ND < 10.0	ND < 5.0	1,200	530	ND < 50	ND < 500	190	ND < 500	ND < 50
Ī	9th Quarterly	3rd Quarter	8/9/2004	1,900	ND < 5.0	ND < 5.0	ND < 15.0	ND < 5.0	2,700	1,100	7.2	730	420	ND < 500	ND < 5.0
Ī	10th Quarterly	4th Quarter	11/5/2004	1,400	5.8	ND < 5.0	ND < 15.0	ND < 5.0	970	460	ND < 5.0	230	160	ND < 500	ND < 5.0
	11th Quarterly	1st Quarter	2/6/2005	1,230	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	1,170	504	3.6	279	208	166	
Ī	12th Quarterly	2nd Quarter	5/13/2005	658	ND < 2.0	ND < 2.0	ND < 4.0	ND < 2.0	533	241	ND < 2.0	ND < 200	136	120	
	13th Quarterly	3rd Quarter	8/9/2005	3,080	ND < 2.5	ND < 2.5	ND < 5.0	ND < 2.5	1,970	787	5.8	373	520	312	
	14th Quarterly	4th Quarter	11/9/2005	1,680	ND < 5.0	ND < 5.0	ND < 10.0	ND < 5.0	1,980	760	5.7	ND < 500	408	253	
ľ	15th Quarterly	1st Quarter	3/8/2006	336	ND < 1.0	ND < 1.0	ND < 2.0	ND < 1.0	308	155	ND < 1.0	ND < 100	138	144	
	Well Installation	2nd Quarter	5/1/2002	102	2.9	ND < 0.3	5.0	0.8	153	46.3	ND < 0.5	ND < 100	ND < 50	ND < 50	
l l	1st Quarterly	3rd Quarter	8/3/2002	8,260	383	145	1.970	420	4,000	1,580	ND < 0.5	ND < 100	916	ND < 50	
l l	2nd Quarterly	4th Quarter	11/4/2002	537	30.8	0.7	39.5	24.9	928	358	ND < 0.5	ND < 50	ND < 50	ND < 50	ND < 0.5
l l	3rd Quarterly	1st Quarter	2/5/2003	ND < 50	ND < 0.5	ND < 0.5	ND < 1	ND < 0.5	100	27	ND < 0.5	17	ND < 50	ND < 500	1.6
l l	4th Quarterly	2nd Quarter	5/12/2003	ND < 50	ND < 0.5	ND < 0.5	ND < 1	ND < 0.5	28	5.5	ND < 0.5	ND < 5.0	ND < 50	ND < 500	1.2
l l	5th Quarterly	3rd Quarter	8/2/2003	6,400	75	ND < 5.0	1,000	460	1,200	540	ND < 5.0	530	ND < 50	ND < 500	ND < 5.0
l l	6th Quarterly	4th Quarter	11/8/2003	52	ND < 0.5	ND < 0.5	1.2	0.5	120	68	ND < 0.5	ND < 5.0	ND < 50	ND < 500	ND < 0.5
	7th Quarterly	1st Quarter	2/5/2004	ND < 50	ND < 0.5	ND < 0.5	ND < 1	ND < 0.5	40	9.4	ND < 0.5	ND < 5.0	ND < 50	ND < 500	0.9
MW-3	8th Quarterly	2nd Quarter	5/4/2004	82	ND < 0.5	ND < 0.5	0.5	ND < 0.5	57	32	ND < 0.5	ND < 5.0	55	ND < 500	ND < 0.5
F	9th Quarterly	3rd Quarter	8/9/2004	970	6.0	ND < 0.5	ND < 1.5	3.6	1,500	530	ND < 0.5	90	250	ND < 500	1.5
ŀ	10th Quarterly	4th Quarter	11/5/2004	100	ND < 0.5	ND < 0.5	ND < 1.5	ND < 0.5	63	19	ND < 0.5	ND < 5.0	240	ND < 500	ND < 0.5
ŀ	11th Quarterly	1st Quarter	2/6/2005	183	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	172	56.1	ND < 0.5	ND < 50	51	95	TAD < 0.5
ŀ	12th Quarterly	2nd Ouarter	5/13/2005	183	ND < 1.2	ND < 1.2	ND < 2.5	ND < 1.2	163	52.6	ND < 1.2	ND < 125	70	84	
ŀ	13th Quarterly	3rd Quarter	8/9/2005	379	ND < 1.0	ND < 1.0	ND < 2.0	ND < 1.0	252	102	ND < 1.0	ND < 100	63	76	
ŀ	14th Quarterly	4th Quarter	11/9/2005	155	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	154	63.5	ND < 0.5	ND < 50.0	ND < 50	70	
ŀ	15th Quarterly	1st Quarter	3/8/2006	54.8	ND < 0.5	ND < 0.5	ND < 1.0	ND < 0.5	50.5	14.0	ND < 0.5	ND < 50.0	55	ND < 50	

Table 4 (cont.) Groundwater Analytical Results from Monitoring Wells

Big Foot Gas 2801 Central Avenue McKinleyville, California 95519

In Quarterly 3nd Quarter	Sample Location	Sample Event	Annual Quarter	Sample Date	TPHg (ppb)	Benzene (ppb)	Toluene (ppb)	Xylenes (ppb)	Ethylbenzene (ppb)	MTBE (ppb)	TAME (ppb)	ETBE (ppb)	TBA (ppb)	TPHd (ppb)	TPHmo (ppb)	EDC (ppb)
August March Mar		Well Installation	2nd Quarter	5/1/2002	7,970	157	356	1,270	483	ND < 20	ND < 5	ND < 5	ND < 1,000	489	ND < 50	
MW-5 Single Quarterly 140 Quarter 125/2003 20,000 170 120 890 6600 ND-50 ND-50 ND-50 ND-50 20,000 ND-500 N		1st Quarterly	3rd Quarter	8/3/2002	9,150	193			1,080	53	ND < 15	ND < 15	ND < 5,000	2,770	ND < 50	
4th Quarterly 2nd Quarter	ĺ	2nd Quarterly	4th Quarter	11/4/2002	6,090	207	343	712	530	ND < 2.0	ND < 0.5	ND < 0.5	ND < 50	159	ND < 50	ND < 0.5
Set Quarterly ref Quarter \$72,000 130 59 406 470 31 20 ND ≤ 50	ĺ	3rd Quarterly	1st Quarter	2/5/2003	20,000	170	120	890	600	ND < 5.0	ND < 5.0	ND < 5.0	ND < 50	2,000	ND < 500	ND < 5.0
MW-4 Marterly	ĺ	4th Quarterly	2nd Quarter	5/12/2003	6,200	96	77	248	220	ND < 50	ND < 50	ND < 50	ND < 500	680	ND < 500	ND < 50
MW-4 MW-4 The Quarterly St Quarter	ĺ	5th Quarterly	3rd Quarter	8/2/2003	7,700	130	59	406	470	31	20	ND < 5.0	ND < 50	ND < 50	ND < 500	ND < 5.0
MW-5 8th Quarterly 2nd Quarter 54/2004 8,000 130 140 594 420 19 ND < 50		6th Quarterly	4th Quarter	11/8/2003	7,900	260	190	385	480	56	ND < 5.0	ND < 5.0	ND < 50	500	ND < 500	ND < 5.0
888 Quarterly 2nd Quarter 54/2004 8,000 130 140 504 420 19 ND ≤50 ND ≤	MW 4	7th Quarterly	1st Quarter	2/5/2004	7,600	180	110	334	460	29	ND < 5.0	ND < 5.0	ND < 50	ND < 50	ND < 500	ND < 5.0
Hoth Quarterly	IVI VV -++	8th Quarterly	2nd Quarter	5/4/2004	8,000	130	140	504	420	19	ND < 5.0	ND < 5.0	ND < 50	1,300	ND < 500	ND < 5.0
His Quarterly 140 Quarter 26/2005 6,390 83.5 120 602 34.3 11.5 ND < 20 ND < 20 ND < 20 ND < 20 729 121	İ	9th Quarterly	3rd Quarter	8/9/2004	5,600	120	44	302	360	67	13	ND < 5.0	ND < 50	850	ND < 500	ND < 5.0
12th Quarterly 2nd Quarter 13th Quarterly 3nd Quarter 8972005 5,270 59,5 53,2 299 210 14.2 1.9 ND < 2.5 ND < 2.5 ND < 2.50 788 106 106 117 1	İ	10th Quarterly	4th Quarter	11/5/2004	58	1.0	ND < 0.5	ND < 1.5	ND < 0.5	6.7	2.8	ND < 0.5	ND < 5.0	120	ND < 500	ND < 0.5
High Quarterly And Quarter 109/2005 5,270 59,5 53,2 299 210 14.2 1.9 ND < 1.2 ND < 1.25 929 147	i	11th Quarterly	1st Quarter	2/6/2005	6,230	83.5	120	602	343	11.5	ND < 2.0	ND < 2.0	ND < 200	729	121	
Hith Quarterly	i	12th Quarterly	2nd Quarter	5/13/2005	3,950	31.4	80.4	493	193	ND < 5.0	ND < 2.5	ND < 2.5	ND < 250	708	106	
Second S	i	13th Quarterly	3rd Quarter	8/9/2005	5,270	59.5	53.2	299	210	14.2	1.9	ND < 1.2	ND < 125	929	147	
Well Installation And Quarter St1/2002 63,800 ND <150 1,270 19,500 1,720 ND <150 ND <250 ND <250 ND <250 ND <250,000 4,200 396	i	14th Quarterly	4th Quarter	11/9/2005	5,040	79.3	72.1	202	219	23.3	1.2	ND < 0.5	ND < 50	1,020	127	
Second Second		15th Quarterly	1st Quarter	3/8/2006	5,150	45.4	98.5	607	229	4.0	ND < 1.0	ND < 1.0	ND < 100	610	147	
2nd Quarterly		Well Installation	2nd Quarter	5/1/2002	63,800	ND < 150	1,270	19,500	1,720	ND < 1,000	ND < 250	ND < 250	ND < 50,000	4,420	396	
3rd Quarterly 3rd Quarter 2s/2003 73,000 51 1,000 16,800 1,200 ND < 50 ND <		1st Quarterly	3rd Quarter	8/3/2002	30,500	ND < 15	486	17,700	1,760	ND < 25	ND < 15	ND < 15	ND < 5,000	9,630	ND < 50	
3rd Quarterly 3rd Quarter 2s/2003 73,000 51 1,000 16,800 1,200 ND < 50 ND <	İ	2nd Ouarterly	4th Ouarter	11/4/2002	81,000	789	ND < 300	24,600	3,710	2,330	1.570	ND < 500	ND < 100.000	3,870	ND < 50	ND < 500
Sth Quarterly And Quarter \$42,2003 \$17,000 ND < 50 \$120 \$3,890 \$400 ND < 50 İ	3rd Ouarterly	1st Ouarter	2/5/2003	78,000	51	1.600	16,800	1,600	ND < 50	ND < 50	ND < 50	ND < 500	ND < 50	ND < 500	ND < 50	
MW-5 Sh Quarterly 4nd Quarter 82/2003 17,000 ND < 50 120 3,890 400 ND < 50	İ	4th Ouarterly	2nd Ouarter	5/12/2003	43,000	ND < 50	790	13,400	1,200	ND < 50	ND < 50	ND < 50	ND < 500	4,100	ND < 500	ND < 50
MW-5 Th Quarterly 1st Quarter 25/2004 39,000 50 1,400 12,2500 1,300 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50	İ	5th Quarterly	3rd Ouarter	8/2/2003	17,000	ND < 50	120	3.890	400	ND < 50	ND < 50	ND < 50	ND < 500	ND < 50	ND < 500	ND < 50
MW-5 Main	İ	6th Quarterly	4th Ouarter	11/8/2003	43,000	ND < 50	760	16,100	1.500	ND < 50	ND < 50	ND < 50	ND < 500	4,100	ND < 500	ND < 50
Sh Quarterly 3nd Quarter 544,2004 54,4000 ND < 50 720 12,800 1,100 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 N		7th Quarterly	1st Quarter	2/5/2004	39,000	50	1,400	22,500	2,000	ND < 50	ND < 50	ND < 50	ND < 500	ND < 50	ND < 500	ND < 50
9th Quarterly 9th Quarterly 4th Quarter 11/52004 37,000 ND < 50 68 19,400 170 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND	MW-5	8th Ouarterly	2nd Ouarter	5/4/2004	54,000	ND < 50	720	12,800	1.300	ND < 50	ND < 50	ND < 50	ND < 500		ND < 500	ND < 50
10h Quarterly 14h Quarter 115/2004 9,800 ND < 50 68 1,940 170 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 5			-		37,000		320	10,000	1,100		ND < 50			8,500		ND < 50
12th Quarterly							68	1.940	170							ND < 50
12th Quarterly 2nd Quarter 5132005 12,600 ND < 10 197 4,050 393 ND < 20 ND < 10 ND < 10 ND < 10,000 1,190 113		11th Ouarterly	1st Ouarter	2/6/2005	13,800	5.5	174	4,090	407	ND < 10	ND < 5.0	ND < 5.0	ND < 500	1,650	151	
15th Quarterly 4rd Quarter 89/2005 12,000 ND < 100 ND < 100 A\$.8\$ 3.160 322 ND < 200 ND < 100 ND < 100 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000 ND < 10,000		- ,	2nd Ouarter	5/13/2005	12,600	ND < 10	197	4.050	393	ND < 20	ND < 10	ND < 10	ND < 1.000	1,190	113	
Hith Quarterly			3rd Quarter	8/9/2005	12,000	ND < 10.0	45.8	3.160	322	ND < 20.0	ND < 10.0	ND < 10.0	ND < 1.000	1.350	177	
See		- ,	-											,		
Well Installation 2nd Quarter \$1/12002 3,750 845 576 1,670 155 980 791 ND < 0.5 ND < 100 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50		,			,											
Ist Quarterly																
2nd Quarterly 4th Quarter 114/2002 9,480 5.35 3.5.2 3,420 743 1,330 5.58 ND < 0.5 ND < 50 190 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND									1.640							
3rd Quarterly 1st Quarter 2st 2003 4,500 20 ND < 5.0 S83 190 ND < 5.0 17 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND		. ,			,									,		ND < 0.5
4th Quarterly 2nd Quarter 5/12/2003 2200 22 1.2 244 166 68 14 ND < 0.5 60 280 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50										2						ND < 5.0
Sh Quarterly		,	•		,									,		0.9
MW-6 MW-6	ŀ															ND < 0.5
MW-6 Th Quarterly 1st Quarter 25/2004 110 4.2 ND < 0.5 ND < 1.0 ND < 0.5 16 5.6 ND < 0.5 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND <	ŀ														,	ND < 0.5
MW-0 Sth Quarterly 2nd Quarter 5/4/2004 2,200 2.5 2.4 200.5 4.0 69 17 ND < 0.5 2.7 590 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50			-													ND < 0.5
9th Quarterly 3rd Quarter 89/2004 880 14 ND < 5.0 ND < 15 ND < 5.0 220 16 ND < 5.0 280 470 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 N	MW-6															ND < 0.5
10th Quarterly			-													ND < 5.0
11th Quarterly 1st Quarter 26/2005 ND < 50 ND < 0.5	ŀ	,														ND < 0.5
12th Quarterly 2nd Quarter 5/13/2008 ND < 50 ND < 0.5 ND < 0.5 ND < 0.5 ND < 0.5 2.1 0.8 ND < 0.5 ND < 50 ND < 50 71 13th Quarterly 3rd Quarter 89/2005 ND < 50.0	ŀ	. ,												,		ND < 0.3
13th Quarterly 3rd Quarter 8-9/2005 ND < 50.0 0.8 ND < 0.5 ND < 1.0 ND < 0.5 ND < 1.0 ND < 0.5 ND < 0.5 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.0 ND < 5.		- ,														
	}	. ,														
14th Quantrity 4th Quantri 11/9/2005 167 2.2 ND < 0.5 ND < 0.5 ND < 0.5 ND < 50.0 83 255	ŀ	- ,	-													
15th Quarterly 1st Quarter 3/8/2006 ND < 50 ND < 0.5 ND < 0.5 ND < 1.0 ND < 0.5 ND < 1.0 ND < 0.5 ND < 0.5 ND < 0.5 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND < 50 ND	ŀ	. ,														

TBA: Tertiary butanol
ETBE: Ethyl tertiary butyl ether
TPHnn: Total petroleum hydrocarbons as motor oil
pple: parks per hillion = µg/1 = 0.001 ppl.
ND: NO detected. Sample was detected at or below the method detection limit as shown.
To expense new.

Notes:
TFHg: Total petroleum hydrocarbons as gasoline
TFHG: Effsyl:
MTBE: Methyl tertiary buyl ether
DIFE: Discopropyl ether
TFHE: Effsyl:
TAME: Tertiary amyl methyl ether
TFHG: Total petroleum hydrocarbons as disest
TFHG: Total petroleum hydrocarbons as disest
The total petroleum hydrocarbons as disest
The total petroleum hydrocarbons as disest
These constituents were never reported at or above the laboratory detection limits.

Chart 1 Hydrograph

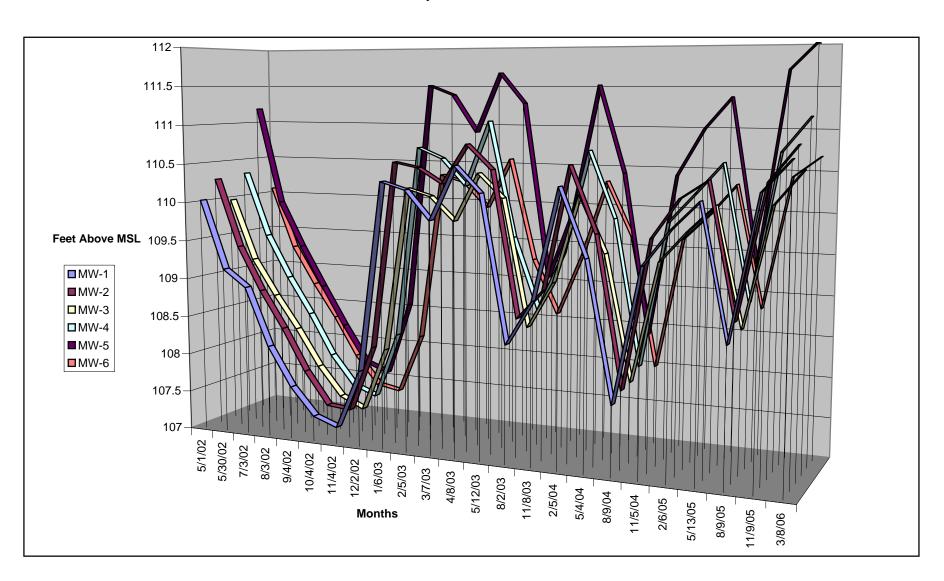
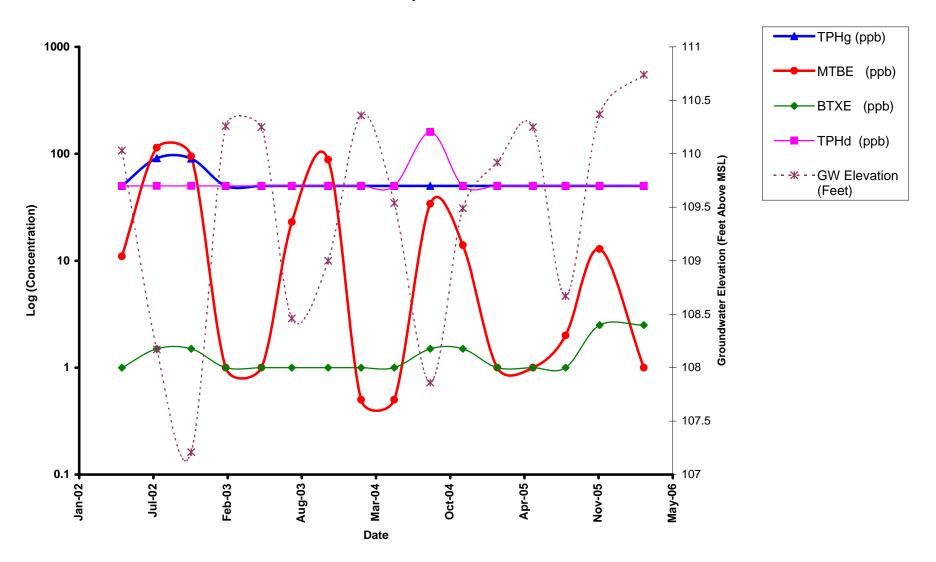



Chart 2
Hydrocarbon Concentrations vs. Time - MW-1

Chart 3 Hydrocarbon Concentrations vs. Time - MW-2

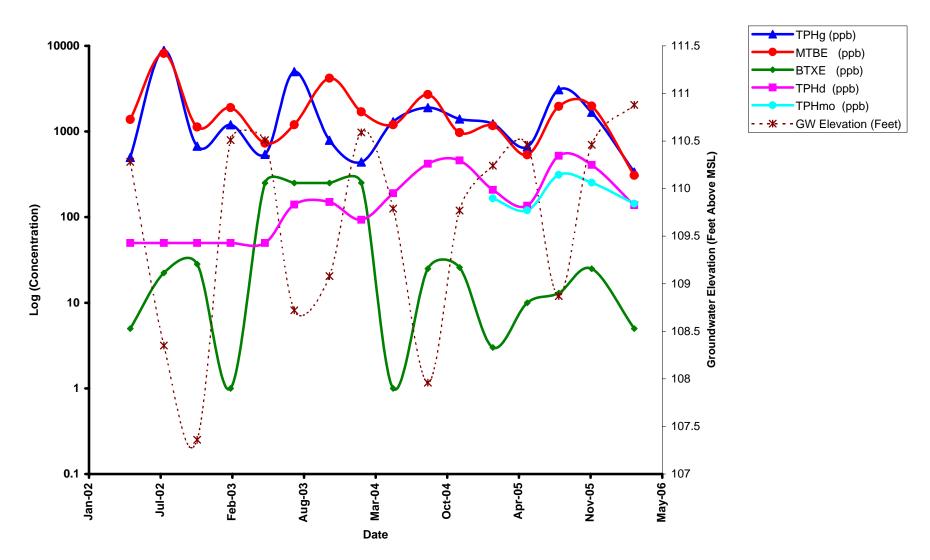


Chart 4
Hydrocarbon Concentrations vs. Time - MW-3

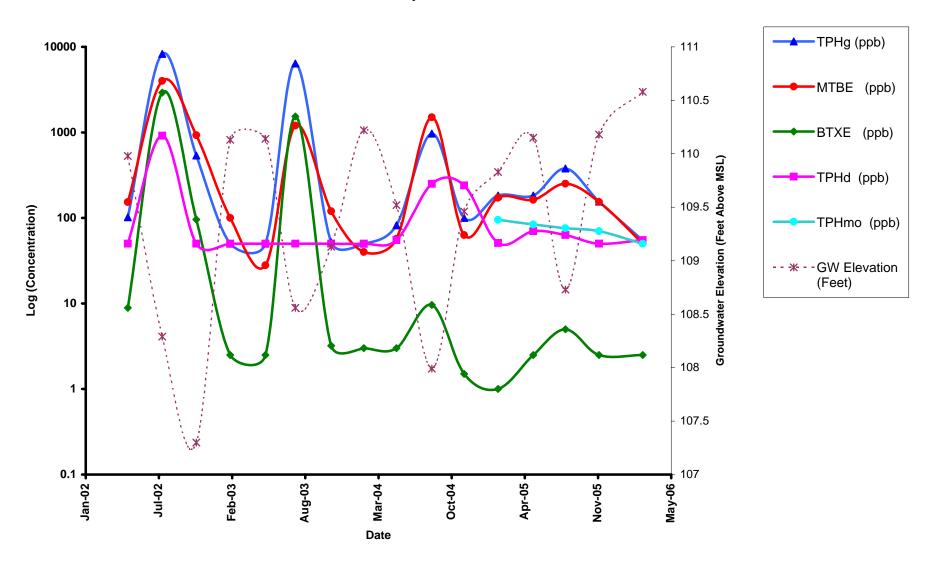


Chart 5
Hydrocarbon Concentrations vs. Time - MW-4

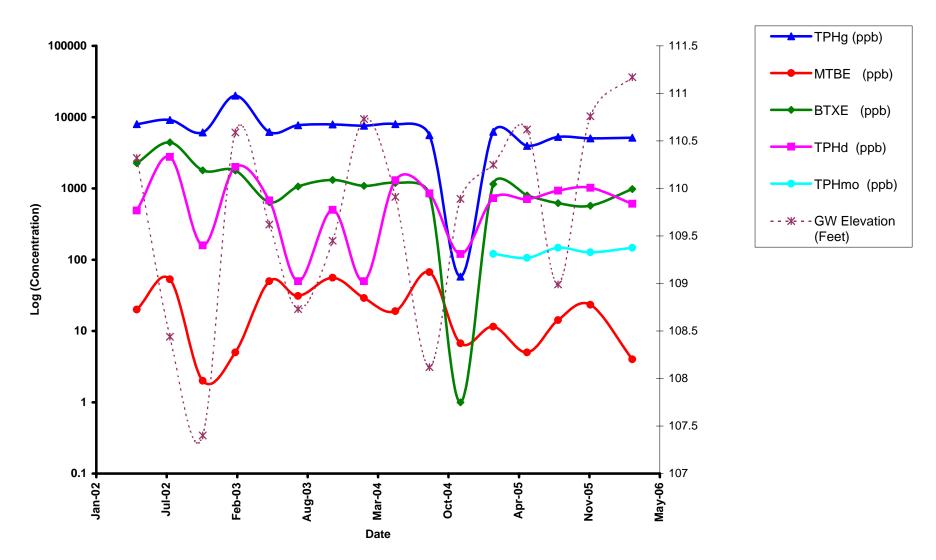
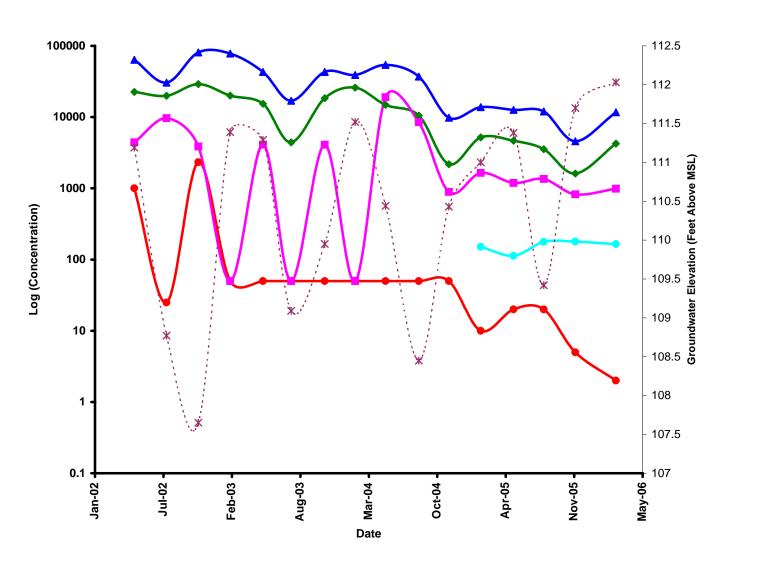
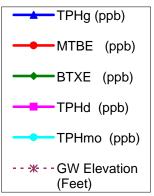
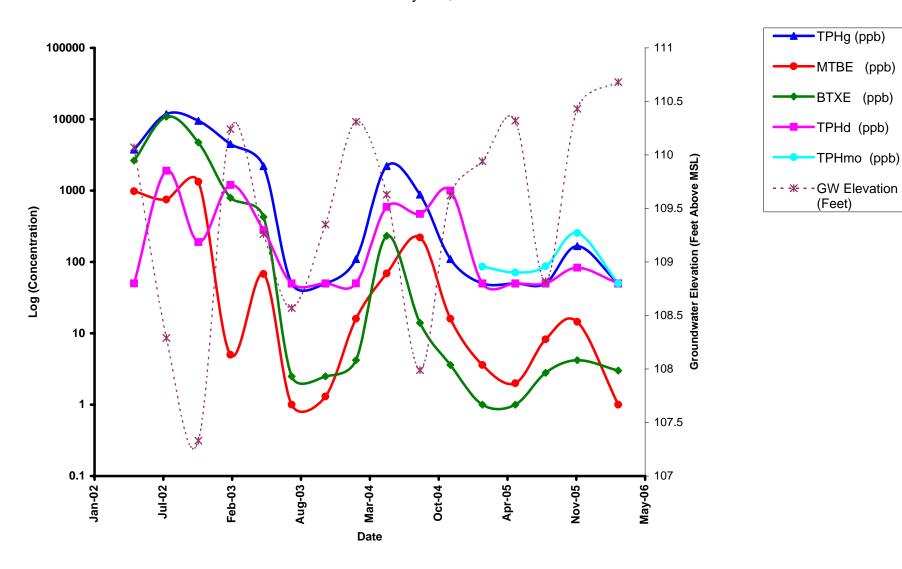
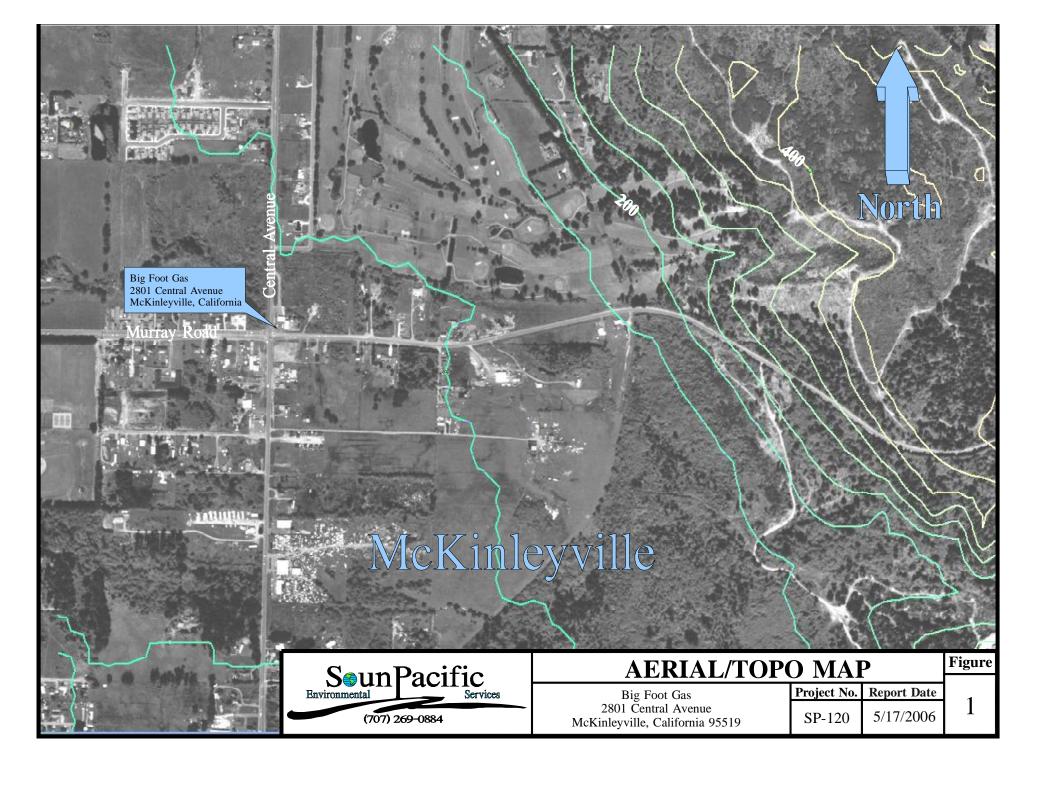
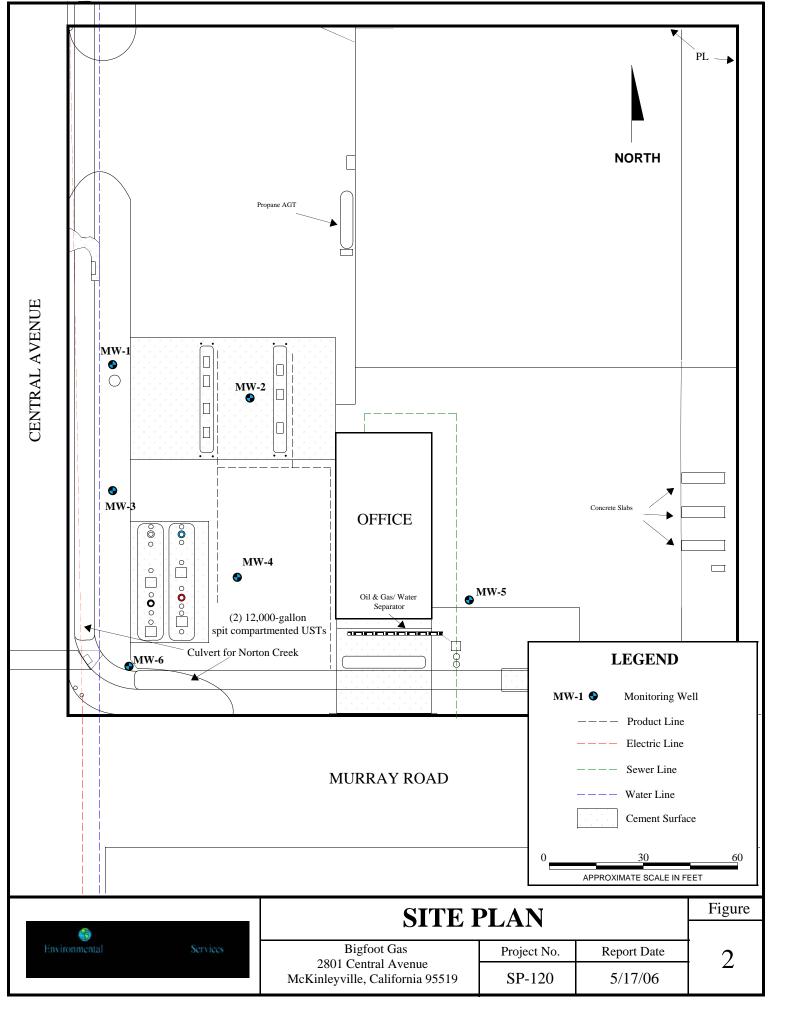
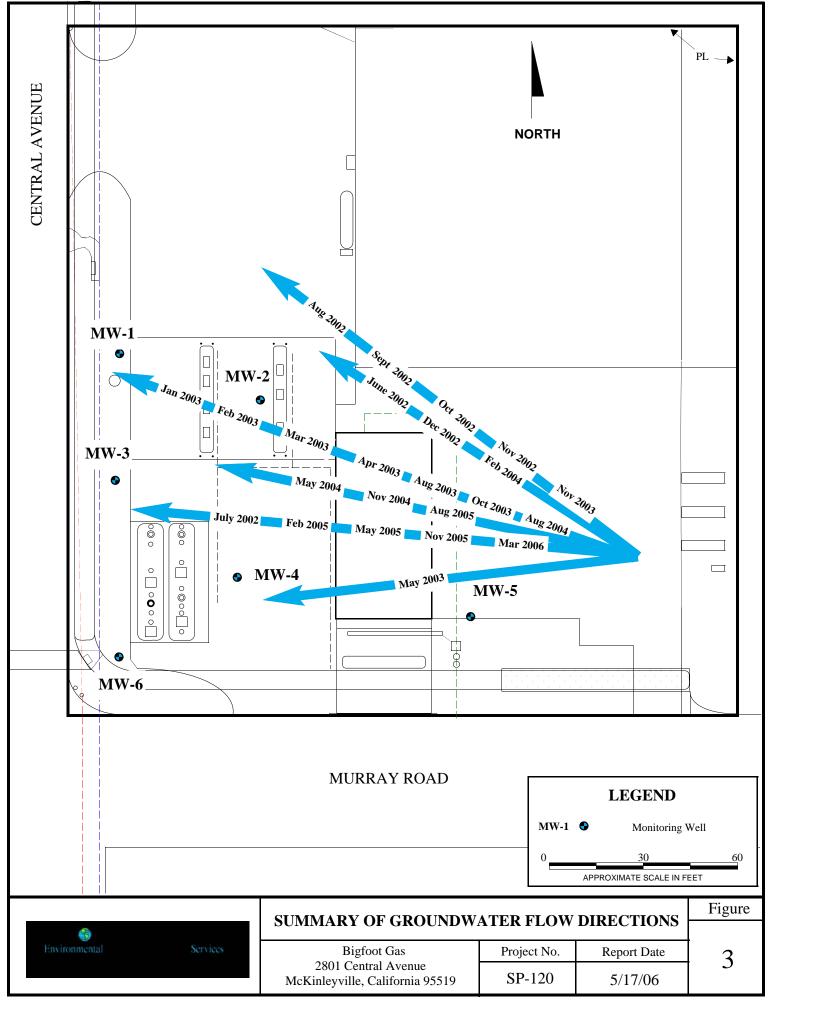
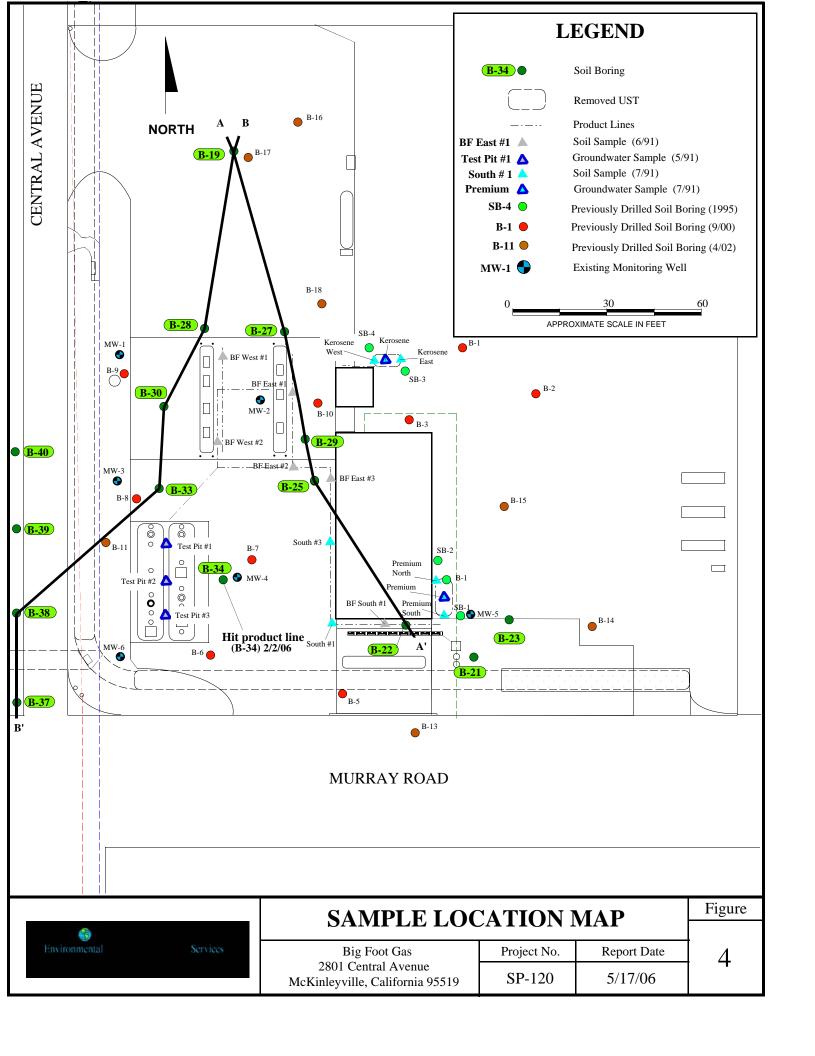
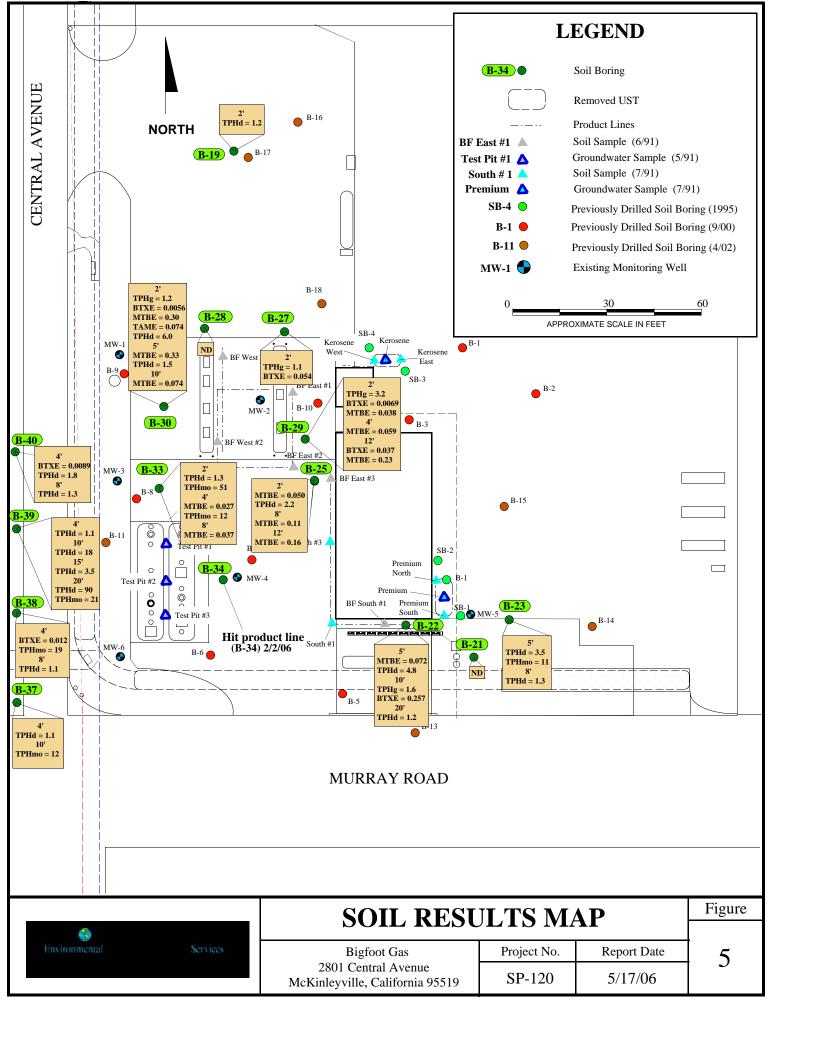



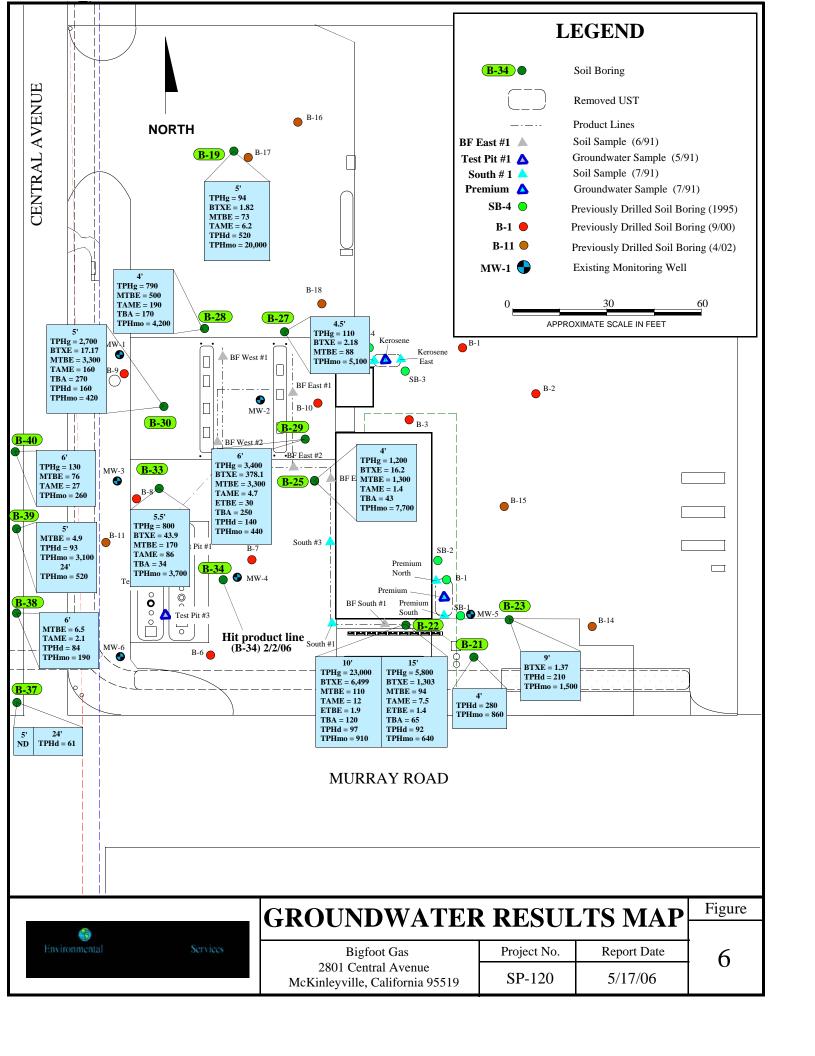
Chart 6
Hydrocarbon Concentrations vs. Time - MW-5

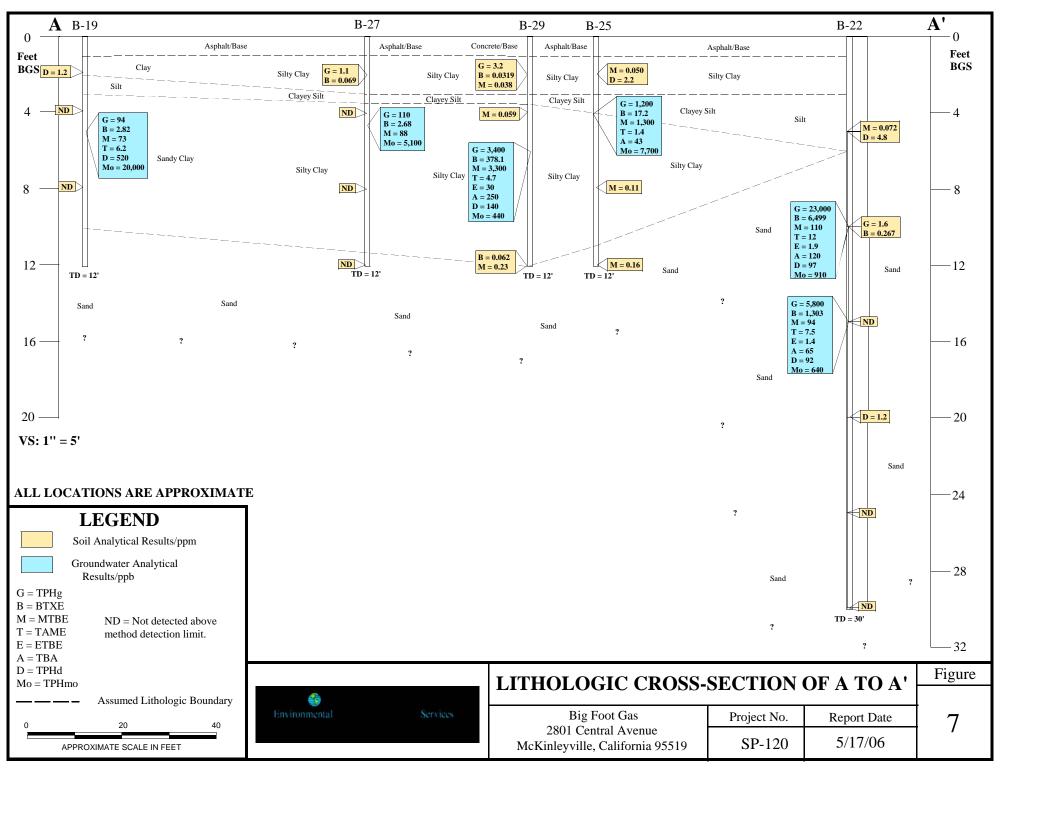





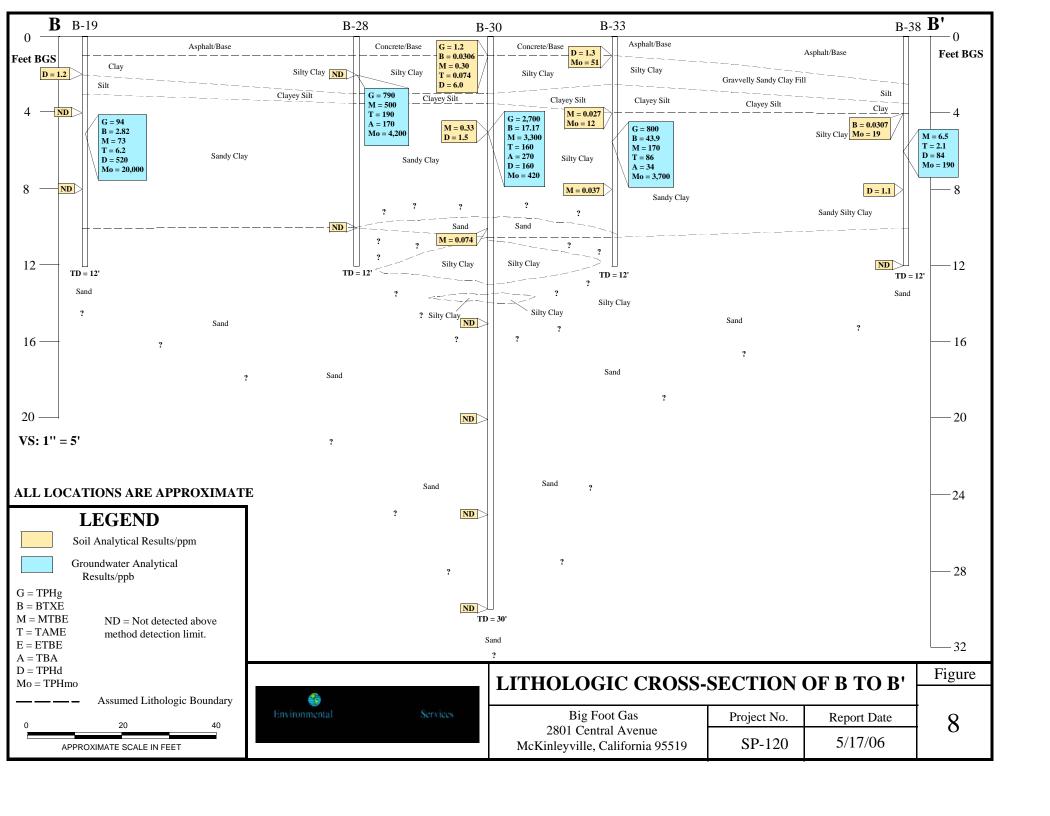

Chart 7
Hydrocarbon Concentrations vs. Time - MW-6

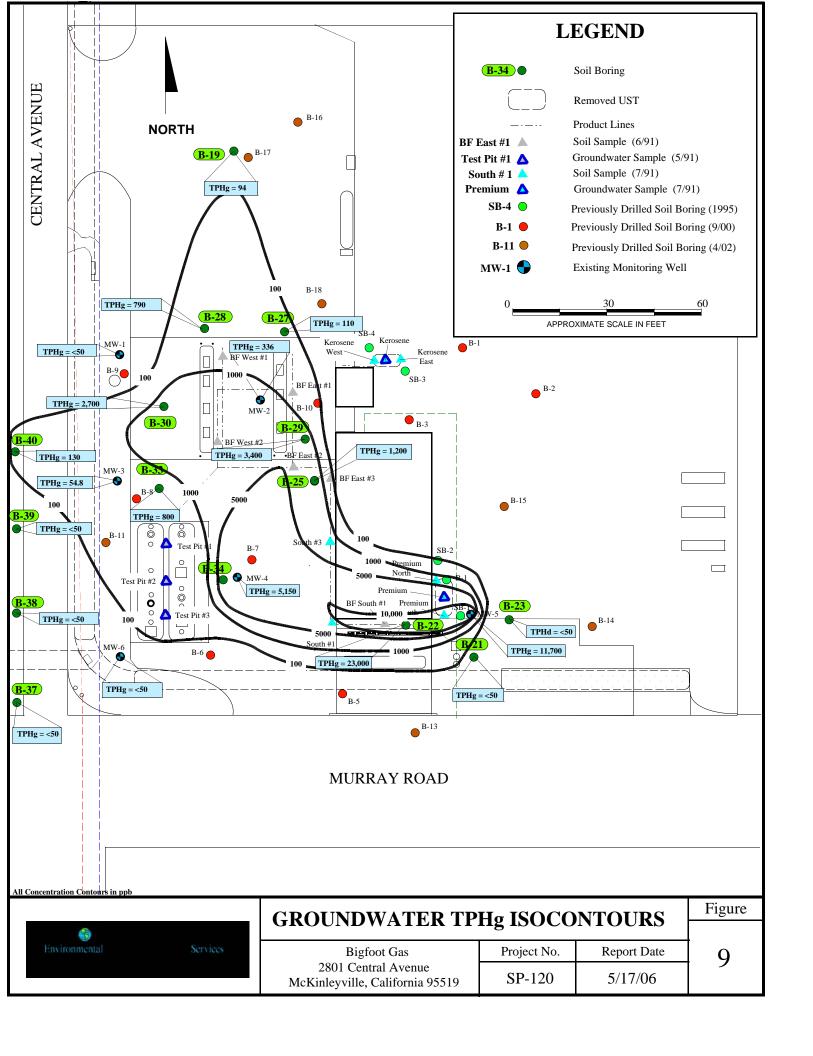


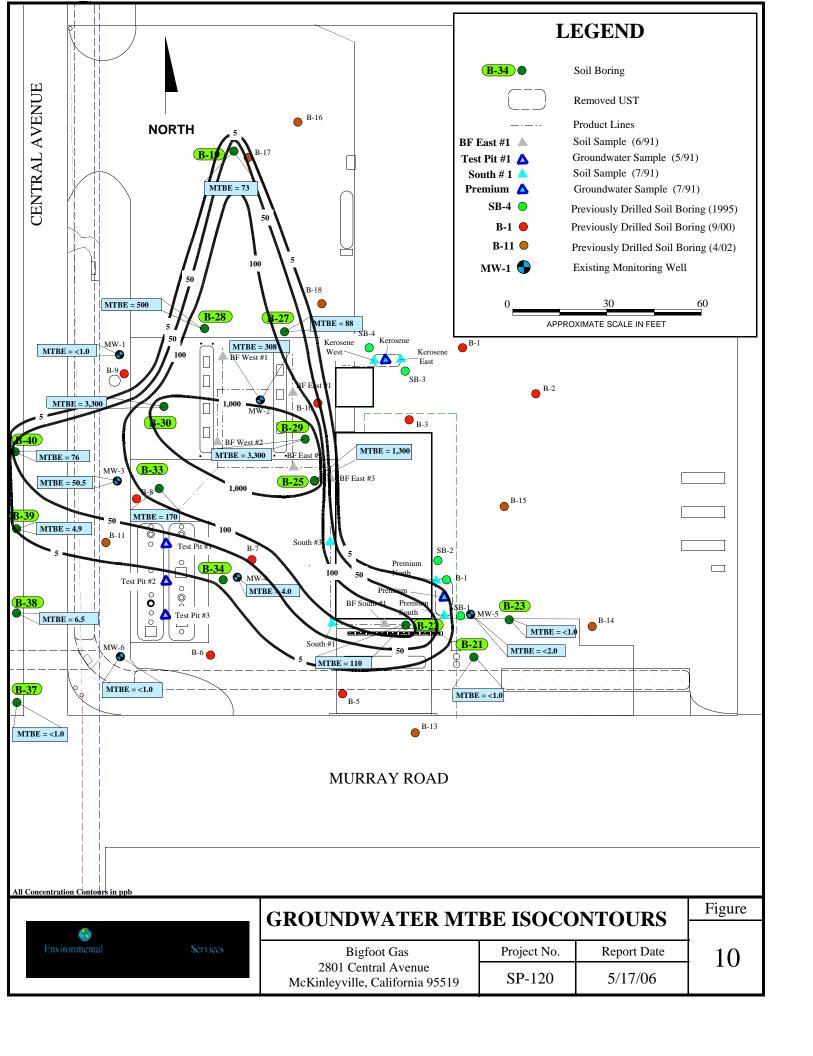

Figures

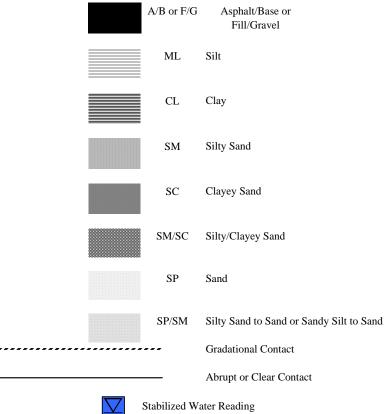












Appendices

Appendix A

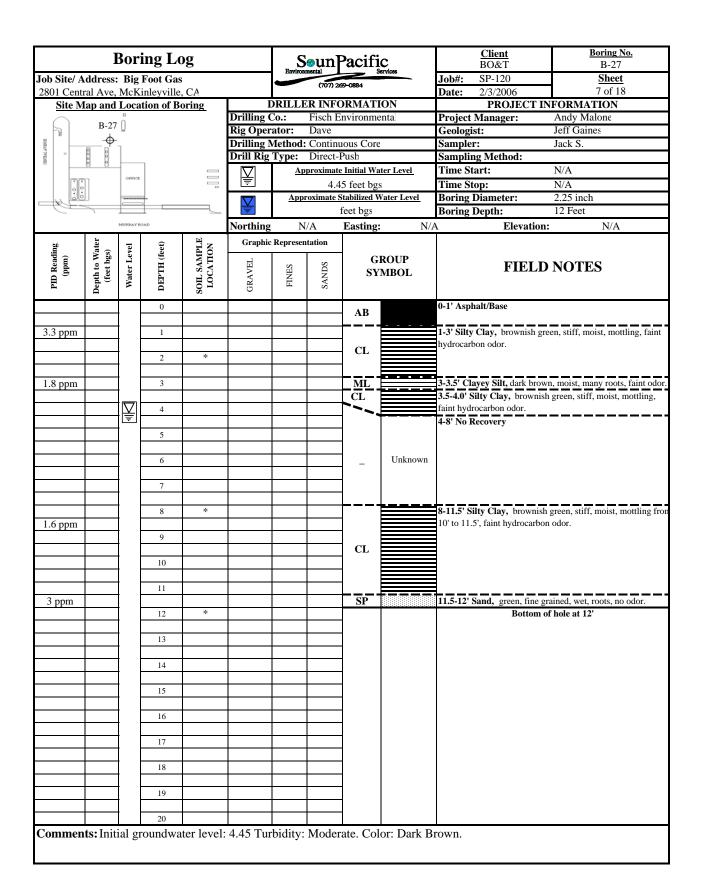
Legend for Soil Boring Logs

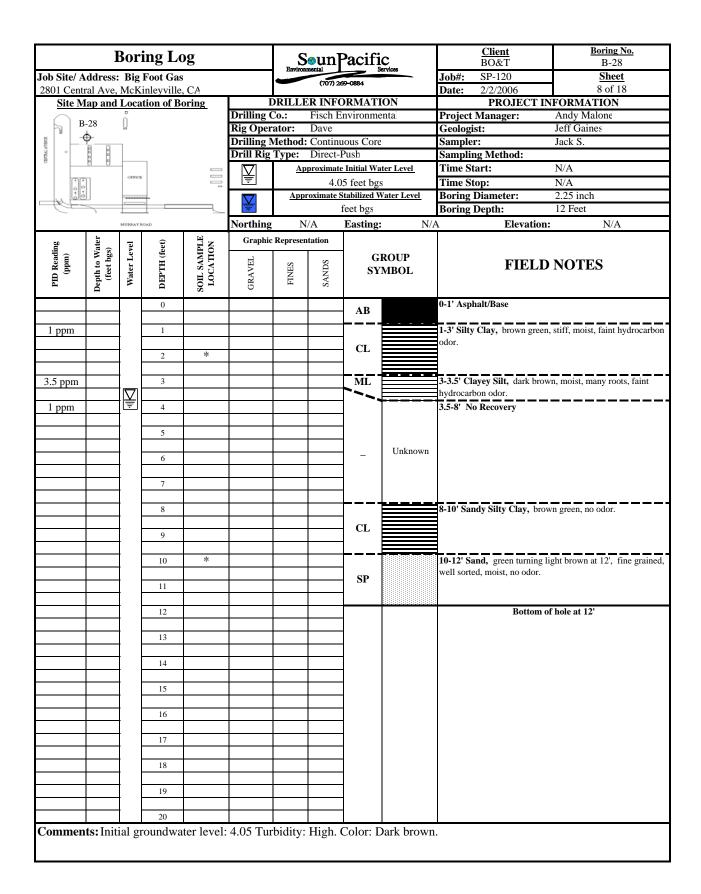
Initial Water Reading

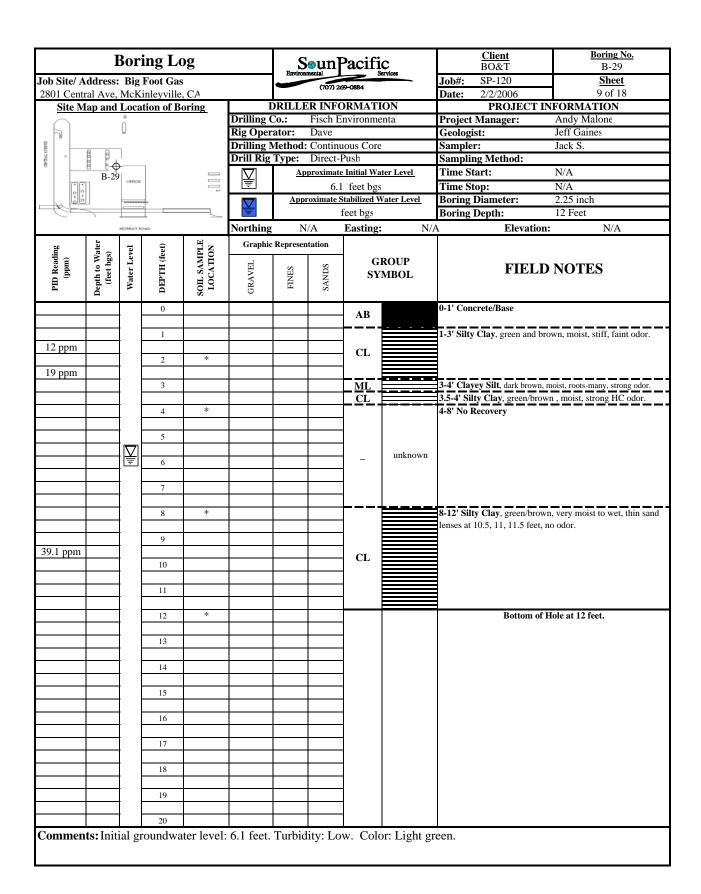
]	Bor	ing Lo	og		, S	•un]	Pacifi	ic	<u>Client</u> BO&T	<u>Boring No.</u> B-19
Job Site/ A						Environ	mental (707) 20	50_0884	DETVICES	Job#: SP-120	Sheet
2801 Centr	al Ave,	McK	inleyville	, CA						Date: 2/2/2006	1 of 18
Site M	ap and	Loca	tion of B	oring			ER INFO				T INFORMATION
	-ф В-19	ñ			Drilling (nvironm	enta	Project Manager:	Andy Malone
	B-19	8			Rig Oper		Dave			Geologist:	Jeff Gaines
SYTMA AT ENG	8 8				Drilling N Drill Rig	Type:	Direct-		2	Sampler: Sampling Method:	Jack S.
8			7				proximate		otor I ovol	Time Start:	N/A
00	П	OFFICE			¥	<u> </u>		1 feet bg		Time Start:	N/A
0 - 0			_	-		Ann			S Vater Level	Boring Diameter:	2.25 inch
A E	_				ightrightarrows			feet bgs		Boring Depth:	12 Feet
		MURRAY R	OAD		Northing	N	I/A	Easting	: N/		
	i.			闰_	- U	Represer		Lasting	• 14/	Zi Elicva	17/11
PID Reading (ppm)	Depth to Water (feet bgs)	Water Level	DEPTH (feet)	SOIL SAMPLE LOCATION		P			ROUP		
Readi (ppm)	et b	er I	Ħ	SAJ	VEI	ES	IDS		MBOL	FIE	LD NOTES
E	epth (fe	Wat	酉	100	GRAVEI	FINES	SANDS	51	MIDOL		
	α			Š	O						
			0					AB		0-1' Asphalt/Base	
			1							1-2' Clay, brown, no odo	
		†	1					CL		1 2 Clay, 510 wii, 110 0dd	<i>,</i> 1.
3.5 ppm		1	2	*				ML		2-3' Silt. light brown, gr	rey mottles, moist, stiff, no odor
		1	3					<u> </u>		3-10' Sandy Clay green	n with orange mottles, roots @ 8', n
6.3 ppm		1	3							odor.	ii with orange mottles, roots @ 0, ii
ою ррии			4	*							
]	5								
		1	6					CL			
		1	7								
		1						1			
1.3 ppm]	8	*				j			
		1	9					-			
		1	10					 		10-12' Sand. Green, fin	e grained, wet, roots, no odor.
		İ						SP			
			11					SI			
0 ppm											01 1 (40)
		1	12					1		Botte	om of hole at 12'
		1	13		-			1			
		†	-					1			
			14								
		1	15					1			
]									
		1	16					-			
		<u>†</u>	17					1			
			10					-			
		1	18					1			
]	19]			
		1	20					-			
			20		1	i		i		i	

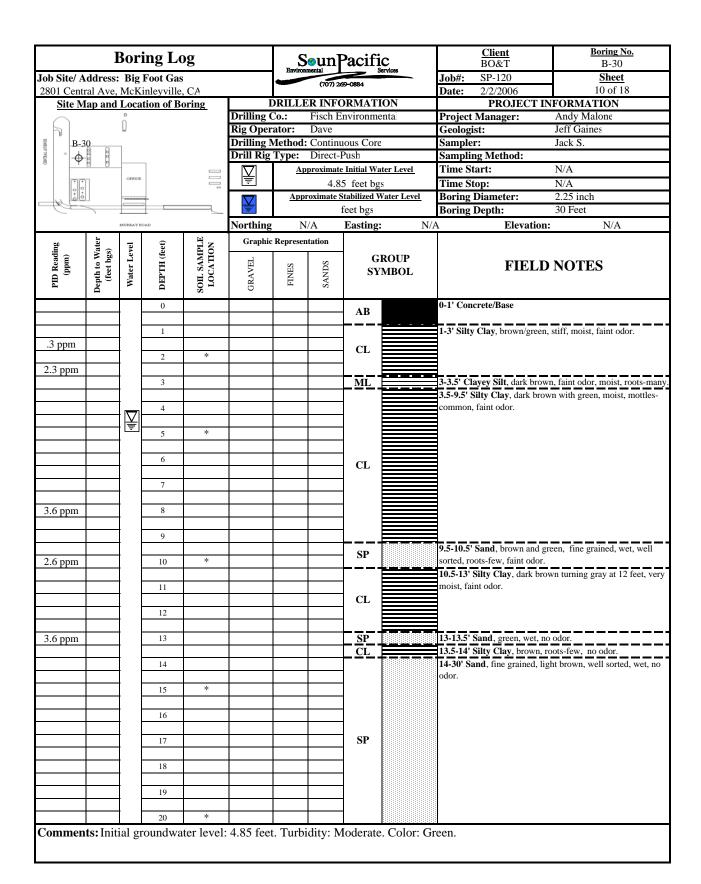
Job Site/ A			ing Lo			Environ	mental	Pacifi	C	BC	ient 0&T -120	Boring No. B-21 Sheet
2801 Cent							(707) 2	69-0884			/2006	2 of 18
Site M	lap and	Loca	tion of B	oring				ORMAT				FORMATION
		n			Drilling (Fisch E	invironme	ental	Project Mar	nager:	Andy Malone
79		Ũ			Rig Oper		Dave			Geologist:		Jeff Gaines
2007	8 0	7			Drilling I				2	Sampler:		Jack S.
CBYTRAL AYENDE	0 0				Drill Rig	Type:	Direct-	Push		Sampling M	lethod:	
	<u> </u>	-			\ <u>\</u>	Ap	proximat	e Initial Wa	ater Level	Time Start:		N/A
]]	OFFICE	B-21		₹			6 feet bg		Time Stop:		N/A
		-				App	roximate S	Stabilized V	Vater Level	Boring Dian	neter:	2.25 inch
-	_				¥			feet bgs		Boring Dept		12 Feet
		MURRAYR	OAD		Northing	N	/A	Easting	: N/A	A	Elevation:	N/A
	ä		_	闰_	1	Represer						
PID Reading (ppm)	Depth to Water (feet bgs)	Water Level	DEPTH (feet)	SOIL SAMPLE LOCATION	Отирине	Tropi eser			DOLD			
Rea	to t	rL	Ĕ	SAN	ÆL	SS	SO		ROUP		FIELD	NOTES
Ē,	fe pth	Vate		100	GRAVEL	FINES	SANDS	SY	MBOL			
Ъ	De	-	Q	os	Ð	ш.	S					
			0							0-3' Asphalt/E	Base	
		i i						l				
] [1					AB				
] [AD				
		↓ ↓	2									
		↓						<u> </u>				
0.6 ppm		ا ـــا	3					ML		3-4' Silt, orang	ge with gray mo	ttles, no odor.
		ŀ¥	4	*						4 9! N - D		
		التا	4	*				1		4-8' No Recov	ery.	
		1 1	5					1				
		1 1						1				
		† †	6					-	Unknown			
		1						1				
		i i	7									
		1 [L		L		
]	8							8-10' Clayey S	Silt, orange with	gray mottles, no odor.
		↓ ↓						ML				
		1	9					_				
0		∤ ∤	10					 _		10 101 5 1		1 (11.5) (1
0 ppm		1 1	10					1		10-12 Sand 9	green turning to	brown at 11.5', roots, no odor.
		1 1	11					SP				
		1 1	11					1				
		† †	12							1	Bottom of	f hole at 12'
		1						1				
		t I	13									
] [
]	14									
		↓						_				
		4	15					_				
		 	16					-				
-		1	16		+	1		-				
		† }	17		+	-		1				
		† †						1				
		† †	18		1			1				
		1						1				
]	19]				
			20									
Commen	ts: Init	ial gr	oundwa	ter level:	: 4.16 fee	t. Turbi	idity: N	1oderate	e. Color: Li	ght Brown		

Boring Log						SounPacific Bryiromental Services				<u>Client</u> BO&T	Boring No. B-22
Job Site/ Address: Big Foot Gas 2801 Central Ave, McKinleyville, CA						(707) 269-0884				Job#: SP-120	Sheet
										Date: 2/2/2006	3 of 18
Site M	ap and	Loca	tion of Bo	<u>oring</u>				DRMATI			FORMATION
		n			Drilling (nvironme	enta	Project Manager:	Andy Malone
a		Ü			Rig Oper		Dave			Geologist:	Jeff Gaines
AVBUE	6 D	1			Drilling N					Sampler:	Jack S.
									Sampling Method:		
	<u>u</u> <u>u</u>	OFFICE			¥	<u>Ap</u>	proximate	Initial Wa	ter Level	Time Start:	N/A
100		CPPICE			Į.			2 feet bgs		Time Stop:	N/A
فالفا	B-22				igtriangledown	Appı			Vater Level	Boring Diameter:	2.25 inch
C	→ B-22				F		f	eet bgs		Boring Depth:	30 Feet
		MURRAYE	OAD		Northing	N	/A	Easting:	N/A	A Elevation:	N/A
93	Depth to Water (feet bgs)	4	t)	CE	Graphic	Represen	tation				
idin J	Wa gs)	eve.	(f ee	MP [0]				GROUP			
Readi (ppm)	o to set b	er I	T.H.	SAJ	VEI	ES	IDS		MBOL	FIELD	NOTES
PID Reading (ppm)	epth (fe	Water Level	DEPTH (feet)	SOIL SAMPLE LOCATION	GRAVEL	FINES	SANDS	51	MDOL		
	Q		I	ž	O						
			0					AB		0-1' Asphalt/Base	
			1							1-3' No Recovery.	
			1							1-5 No Recovery.	
			2					_	Unknown		
		,									
			3							3-6' Silt greenish-brown, ver	y moist, hydrocarbon odor.
		\sqsubseteq									
			4					ML			
		,		*							
		,	5	*							
		,	6					 -		6-30' Sand green, fine graine	d, wet, hydrocarbon odor at 6',
		,								turns orange-brown at 12', no	
			7								
			8								
			9								
		į.	9								
		,	10	*							
		,									
			11					1			
			12								
		,						CIP.			
			13				-	SP			
			14				-				
		,	14								
			15	*							
			-					1			
			16]			
			17								
			10				-				
			18				-				
			19				-				
			17								
			20	*							

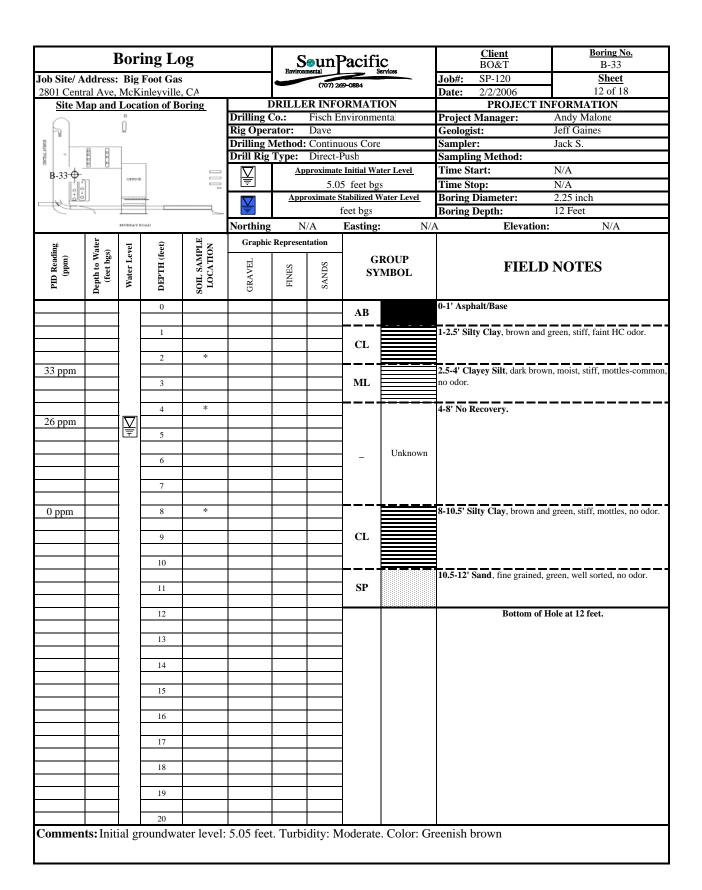

Comments: Initial groundwater level: 3.62 feet. No groundwater sample at 5 feet due to hole collapse. Groundwater sample at 10 feet: Turbidity: High. Color: Green. Groundwater sample at 15 feet: Turbidity: Moderate. Color: Light brown. Sand forced up by lithostatic


Boring Log Job Site/ Address: Big Foot Gas						Soun Pacific Services				<u>Client</u> BO&T	Boring No. B-22		
										Job#: SP-120	Sheet		
2801 Central Ave, McKinleyville, CA										Date: 2/2/2006	4 of 18		
Site Map and Location of Boring							ER INFO	RMATI	ON		PROJECT INFORMATION		
			Drilling (ng Co.: Fisch Environmental				Project Manager:	Andy Malone				
70		Ō			Rig Oper		Dave			Geologist:	Jeff Gaines		
CBYTRAL AVENUE	e 6	7			Drilling N				!	Sampler:	Jack S.		
SEMENT OF THE PERSON OF THE PE	0 0 0		7		Drill Rig					Sampling Method:			
	_	OFFICE			Approximate Initial Water Level					Time Start:	N/A		
[÷] (•)					5.02 feet bgs					Time Stop:	N/A		
فالفال		=-	B-22		1 IV I					Boring Diameter:	2.25 inch		
		_			reet 8gs				Boring Depth:	30 Feet			
		MURRAYR	OAD	1	Northing	N	/A	Easting:	N/A	Elevation:	N/A		
PID Reading (ppm) Depth to Water (feet bgs) Water Level DEPTH (feet) SOUL SAMFLE LOCATION					Graphic Representation								
Read ppm) to V		Water Level	DEPTH (feet)	SAM	GRAVEL	SS	SS		ROUP	FIELD NOTES			
Ü Ā	pth (fec	Vate	<u> </u>	1000	KA7	FINES	SANDS	51	MBOL		-,		
Ъ	De	_	Q	os	Ð	П	S						
			20	*						6-30' Sand green, fine graine	d, wet, hydrocarbon odor at 6',		
										turns orange-brown at 12', no	odor at 12'.		
			21										
		↓											
			22										
			22										
		ł	23										
		•	24										
		t						GP.					
		İ	25	*				SP					
		İ											
			26										
		ŀ	27										
		ŀ	28										
			26										
			29										
		t l	-					1					
]	30	*						Bottom of	f hole at 30'		
		ļ	•										
			11		1		1						
		}	12		1		-						
		 	12				1						
		1	13				-						
		†											
		†	14					1					
			15										
					1								
			16				-						
			17				1						
		 	1 /		1		1						
		†	18				<u> </u>						
		t l					1						
		t l	19					1					
]]					
			20										

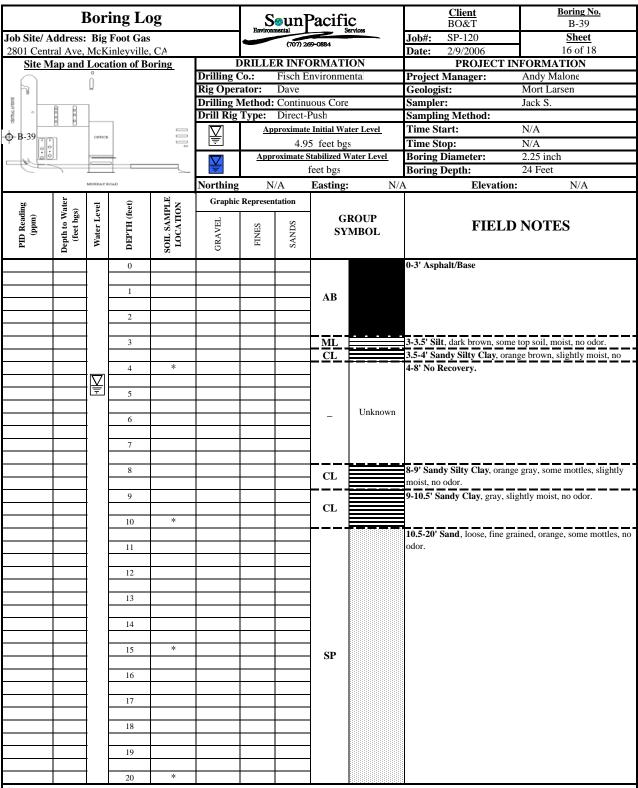

Comments: Initial groundwater level: 3.62 feet. No groundwater sample at 5 feet due to hole collapse. Groundwater sample at 10 feet: Turbidity: High. Color: Green. Groundwater sample at 15 feet: Turbidity: Moderate. Color: Light brown.


Boring Log						Soun Pacific			C	<u>Client</u> BO&T	Boring No. B-23	
Job Site/ Address: Big Foot Gas					Environmental Services				Job#: SP-120	Sheet		
2801 Central Ave, McKinleyville, CA Site Map and Location of Boring										Date: 2/2/2006	5 of 18 FORMATION	
Drilling Rig Ope						DRILLER INFORMATION illing Co.: Fisch Environmental g Operator: Dave				PROJECT IN Project Manager:	Andy Malone	
										Geologist:	Jeff Gaines	
Dri Dri					Drilling N		Continu	uous Core	!	Sampler:	Jack S.	
					Drill Rig		Direct-			Sampling Method:		
					Approximate Initial Water Level					Time Start:	N/A	
										Time Stop: N/A Boring Diameter: 2.25 inch		
					Approximate Stabilized Water Level feet bgs				vater Level	Boring Depth: 2.25 inch 8 Feet		
	1	MURRAYE	OAD					. N/.				
	÷.			區					11/2	A Extraction. TVA		
ding (Vate gs)	evel	DEPTH (feet)	SOIL SAMPLE LOCATION	Graphic Representation		Itation	CROUD				
PID Reading (ppm)	Depth to Water (feet bgs)	Water Level			GRAVEL	FINES	SANDS	GROUP SYMBOL		FIELD NOTES		
			0					F/G		0-1' Fill/Gravel		
		}	1					ML		1-1.5' Topsoil silt, dark brow	/n.	
		1	1					17117		1.5-5' No Recovery		
]	2]		-		
			2					4	I Julya			
			3	-				-	Unknown			
		†	4					1				
]						<u> </u>	<u> </u>			
21.7 ppm			5	*				_		5-8' Silty Clay green-brown,	some sand at 8'.	
		ł	6					1				
			- 0					_				
		Į	7									
58.0 ppm											01 1 401	
			8	*				1		Bottom	of hole at 8'	
		t	9					1				
			10					_				
			11					1				
		†	11					1				
]	12									
			12					4				
			13					-				
		†	14					1				
]										
			15					4				
			16					1				
		<u> </u>										
-			17									
			18					1				
			18					1				
		†	19					1				
]										
	l	1	20	1			1					

										CII.	D N -			
]	Bori	ing Lo	og		S	⊜un]	Pacifi	c	<u>Client</u> BO&T	Boring No. B-25			
Job Site/ A						Environ	mental		ervices	Job#: SP-120	Sheet			
2801 Cent							(707) 2	69-0884		Date: 2/2/2006	6 of 18			
			tion of B		I	RILLE	ER INFO	ORMATI	ON		INFORMATION			
		n		<u></u>	Drilling (invironme		Project Manager:	Andy Malone			
79		Ñ			Rig Oper		Dave			Geologist:	Jeff Gaines			
SHEAL AVENUE	6 D				Drilling N					Sampler:	Jack S.			
© Gribal			_		Drill Rig	Type:	Direct-	Push		Sampling Method:				
	-ф В-25	OFFICE			Ş	Ap	proximate	e Initial Wa	ter Level	Time Start:	N/A			
T C	B-25	CFFICE			₹			0 feet bgs		Time Stop:	N/A			
الفالف ا			<u> </u>		∇	App			Vater Level	Boring Diameter:	2.25 inch			
		_			₹	feet bgs				Boring Depth:	12 Feet			
		MURRAYR	DAD		Northing	N	/A	Easting :	N/A	A Elevation	on: N/A			
Se .	Depth to Water (feet bgs)	el	et)	J. E.	Graphic	Represer	ntation							
PID Reading (ppm)	W;	Water Level	DEPTH (feet)	OIL SAMPLI LOCATION	75		S	G	ROUP	FIELD NOTES				
(g)	th to	ater	_ <u>F</u>	L S/	GRAVEL	FINES	SANDS	SY	MBOL					
E	Depi	×.	DE	SOIL SAMPLE LOCATION	GR.	臣	SA							
			0							0-1' Asphalt/Base				
		† †						AB		o i rispinio susc				
		1	1							1-3' Silty Clay, green-brow	wn, stiff, hydrocarbon odor.			
							CL							
			2	*				L CL						
		+	3					├ -		3-3.5' Clayey Silt dark br	own hydrocarbon odor			
								ML		5-3.5 Clayey She dark of	own, nydrocarbon odor.			
			4							3.5-8' No Recovery				
]												
			5	_				_						
		1	6					_	Unknown					
		†												
] [7											
			8	*				⊢− −-		8-11' Silty Clay, green-br	over no odor			
		1		-				1		6-11 Sitty Clay, green-or	own, no odor.			
		† †	9	1				CL						
]						CL						
			10					_						
		} }	11					├		11-12' Sand, green, fine g	rained roots no odor			
		†						SP		11 12 bane, green, into g	ramoa, rooto, no odor.			
]	12	*						Botton	n of hole at 12'			
			12	<u> </u>				4						
		} }	13											
		†	14					1						
]												
			15					_						
		}	16	-				1						
		† †	10					_						
]	17											
		ļ [4						
ļ			18	1				4						
		 	19					1						
		† †		†				1						
			20											
Commen	ts: Init	ial gr	oundwa	iter level:	4.0 Turb	idity: I	Modera	te to Hig	gh. Color: l	Light green.				



	I	3or	ing L	og		S	oun]	Pacific	<u>Client</u> BO&T	Boring No. B-30			
Job Site/ A						Environ	mental (707) 2	Services 69-0884	Job#: SP-120	Sheet			
2801 Centi									Date: 2/2/2006				
Site M	ap and	Loca	tion of B	<u>oring</u>	Drilling (ORMATION Environmental		PROJECT INFORMATION Project Manager: Andy Malone			
h		Q			Rig Oper		Dave	environmenta.	Project Manager: Geologist:	Jeff Gaines			
								uous Core	Sampler:	Jack S.			
B-30	PI [2]				Drill Rig		Direct-		Sampling Method:				
ε Ψ	<u> </u>	-			Ş	Ar	proximat	e Initial Water Level	Time Start:				
() ()		OFFICE			Approximate Stabilized Water Level				Time Stop:	Time Stop: N/A			
فالفا		_								Boring Diameter: 2.25 inch			
		_			Ē	feet bgs			Boring Depth:	30 Feet			
		MUFFAY	ROAD	1	Northing N/A Easting: N/A			Easting: N.	/A Elevation	on: N/A			
ling Vater (s) (reet) (reet)			Graphic	Represer	ntation								
PID Reading (ppm)	Depth to Water (feet bgs)	Water Level	DEPTH (feet)	SOIL SAMPLE LOCATION	GRAVEL	FINES	SANDS	GROUP SYMBOL	FIEL	D NOTES			
0			20	*					101	light brown, well sorted, wet,			
0 ppm			21					-	odor.				
			22]					
			22]					
			23					-					
			24										
			25	*				- SP					
			26										
			26										
0 ppm			27					-					
			28										
			29					-					
			30	*					Rottom	of Hole at 30 feet.			
			30	,				1	Bottom	of Hole at 50 feet.			
								_					
								-					
								1					
]					
								1					
								4					
								1					
								-					
]					
							-	4					


]	Bor	ing Lo	og		S	•un]	Pacifi	C	<u>Client</u> BO&T	Boring No. B-37		
Job Site/ A	ddress:	Big	Foot Gas	S		Eliviron	(707) 24	59-0884	ETVICES .	Job#: SP-120	Sheet		
2801 Centr										Date: 2/9/2006 13 of 18			
Site M	ap and	Loca	tion of B	<u>oring</u>				DRMATI		PROJECT INFORMATION			
		0			Drilling (nvironme	enta.	Project Manager:	Andy Malone		
					Rig Oper Drilling N	Acthod	Dave	ions Core	1.	Geologist: Sampler:	Mort Larsen Jack S.		
CBSBAL A7 BSU					Drill Rig		Direct-			Sampling Method:	Jack S.		
8	9 9	+						Initial Wa	ter Level	Time Start:	N/A		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			¥			5 feet bg		Time Stop:	N/A				
				App		υ	Vater Level	Boring Diameter:	2.25 inch				
B-37 MURRAYROAD NO.		$\stackrel{\smile}{=}$			feet bgs		Boring Depth:	24 Feet					
		Northing	N	/A	Easting:	N/A	A Elevation	on: N/A					
		Graphic	Represer	ntation									
eadi	(ppm) Depth to Water (feet bgs) Water Level DEPTH (feet) LOCATION		AM DIT	EL	70	S	G	ROUP	FIET	D NOTES			
D R (pg	feet	ater	E E	L S.	GRAVEL	FINES	SANDS	SYMBOL		FIELD NOTES			
ы	Dep	W	DE	SOI	GR	臣	SA						
PID			0							0-3.5' Asphalt/Base, no oc	lor.		
Malfunction]					
		1	1										
		1	2	-				AB					
		1		1				1					
		1	3										
								CL		3.5-4' Silty Clay, brown g	ray, slightly wet, no odor.		
			4	*				Γ		4-8' No Recovery.			
		<u></u>						-					
		۳	5					1					
		1	6					-	Unknown				
		Ì											
		1	7										
		1	0					⊢		9 15! Cond. anavish hasyu	to brown at 12 feet, saturated, no		
		1	8					ł		odor, fine grained, some or			
		1	9							, , , , , , , , , , , , , , , , , , , ,	6		
		1	10	*									
		1	11		ļ			-					
		1	11	1				SP					
		†	12					1					
]]					
		1	13					1					
		1	14	-				-					
		1	14	-				1					
		1	15	*				 		15-20' Sand, fine grained,	orange-brown, slightly moist, firm		
]		sub rounded pebbles, no oc	dor.		
		1	16	ļ	ļ			4					
		1	17	-	 			-					
		1	1/	 				SP					
		†	18					1 -					
								1					
		↓	19					1					
		1	20	*	ļ			4					
			20		l		<u> </u>				nnles taken at 5 and 24		

Comments: Initial groundwater level: 5.05 feet. Turbidity: Moderate. Color: Light brown. Water samples taken at 5 and 24 feet. No recovery beyond 20 feet.

	Boring Log						⊕unF	Pacifi	c _.	<u>Client</u> BO&T	Boring No. B-37			
Job Site/ A	ddress:	Big	Foot Gas			Environ	mental	S.	rvices	Job#: SP-120	Sheet			
2801 Centi	ral Ave,	McK	inleyville,	, CA			(707) 26	9-0884		Date: 2/9/2006	14 of 18			
Site M	ap and	Loca	tion of Bo	oring				RMATI		PROJECT IN	FORMATION			
		0			Drilling (Fisch E	nvironme	nta	Project Manager:	Andy Malone			
7		Ũ			Rig Oper		Dave			Geologist:	Mort Larsen			
200	6 6	7			Drilling N					Sampler: Jack S.				
CBUDST AVENUE	0 0				Drill Rig	Type:	Direct-I	Push		Sampling Method:				
° -	0 0		7		¥	Ap	proximate	Initial Wa	ter Level	Time Start:	N/A			
OFFICE STATE OFFICE					₹		1	eet bgs		Time Stop:	N/A			
			_	_	∇	Appr	oximate S	tabilized W	ater Level	Boring Diameter:	2.25 inch			
ФВ-37	_		1 =	$\overline{}$			1	eet bgs		Boring Depth:	24 Feet			
MURRAY ROAD Northing				N	/A	Easting:	N/A	A Elevation:	N/A					
			Graphic	Represen	tation									
PID Reading (ppm)	Depth to Water (feet bgs)	Water Level	DEPTH (feet)	SOIL SAMPLE LOCATION	GRAVEL	FINES	SANDS	GROUP SYMBOL		FIELD NOTES				
			20	*						20-24' No Recovery.				
			21											
			21											
			22					_	Unknown					
			22											
			23											
			24							Bottom of Hole an	d Refusal at 24 feet.			
				-										
		1												
-														
							ļ							
														
				-										
		}												
	1		1	I	l	1	l							

Comments: Initial groundwater level: 5.05 feet. Turbidity: Moderate. Color: Light brown. Water samples taken at 5 and 24 feet.

	Boring Log ob Site/ Address: Big Foot Gas					Soun Pacific Environmental Services					Client BO&T	Boring No. B-38			
							(707) 26	9-0884		Job#:	SP-120	<u>Sheet</u> 15 of 18			
2801 Centr			tion of B		l f	RILLE	ER INFO	RMATI	ON	Date:	2/9/2006 PROJECT	INFORMATION			
O	ap ana	n	tion of D	ormg	Drilling (nvironme		Project	Manager:	Andy Malone			
h		Ñ			Rig Oper		Dave			Geologi		Mort Larsen			
VENUE	0 0	_			Drilling N		Continu	ous Core		Sample		Jack S.			
BITEAL AVENUE					Drill Rig		Direct-l			Sampling Method:					
	R D				Approximate Initial Water Level						Time Start: N/A				
↓ D 20	Π	OFFICE	*		= V 						top:	N/A			
Ф В-38		******			∇	Appi	roximate S	tabilized W	ater Level	Boring	Diameter:	2.25 inch			
6	_			=	-		1	feet bgs		Boring		12 Feet			
MURRAY ROAD				Northing	N	/A	Easting:	N/A	A	Elevation	on: N/A				
PID Reading (ppm) Depth to Water (feet bgs) Water Level DEPTH (feet) LOCATION			1	Represen	itation										
eadii m)	PID Reading (ppm) Depth to Water (feet bgs) Water Level DEPTH (feet) LOCATION		IMI TIO	J.		S	Gl	ROUP		TOTTOT	DNOTES				
(pp	th to feet	ater	PTE	L S/	GRAVEL	FINES	SANDS	SY	MBOL	FIELD NOTES					
Ы	Depi (i	×	DE	[SOI	GR.	臣	SA								
			0							0-2 5' As	sphalt/Base				
		ł	0							0 2.0 110	spinara Base				
1						AB									
2															
				1			ML			Silt, dark brown, s at 3.5 feet.	some top soil, moist, no odor, clay				
3							CL				lightly moist, no odor.				
	4 *							<u> CD</u>			Recovery.	inginity moist, no odor.			
		\Box									,				
			5												
									Unknown						
		ł	6												
			7												
		İ						L		<u>L</u>					
			8	*				CL				n fading to gray at 9 feet, slightly			
			-							moist, no					
			9					CL			ndy Silty Clay, gi g toward bottom,	ay, roots, slightly moist, sand			
		ł	10									o brown at 10.5 feet, no odor.			
		İ						SP							
			11					51							
		ł	12	*	1		-				Dattom	of Hole at 12 feet.			
		ł	12								Domail (2 1101C &C 1# 1CCC			
		İ	13												
]													
		<u> </u>	14		ļ										
		ł	15												
		ŀ	13												
		1	16												
		1													
		ļ	17		 										
		1	18		 		 								
		t													
]	19												
		ļ													
G	,		20		5.015	m 1	1		0.1 *:	1	g :	1			
Commen	ts: Init	ıal gı	roundwa	iter Ievel:	5.21feet.	Turbio	dity: M	oderate.	Color: Lig	ght brow	vn. Sample ta	aken at ~6 feet			

Comments: Initial groundwater level: 4.95 feet. Turbidity: High (sand). Color: Yellowish brown. Water samples taken at 5 and 24 feet.

	Boring Log Job Site/ Address: Big Foot Gas					SounPacific Environmental Services					Client BO&T Boring No. B-39			
Job Site/ A	ddress:	Big	Foot Gas	GA.			(707) 26			Job#:	SP-120 2/9/2006	<u>Sheet</u> 17 of 18		
2801 Centr	an Ave,	Loca	tion of B	, CA oring	Г	RILLE	R INFO	RMATI	ON	Date:		T INFORMATION		
O DICE IN	ap and		tion of D	oring	Drilling (nvironme		Project	Manager:	Andy Malone		
h		Ũ			Rig Oper		Dave			Geologi		Mort Larsen		
		_			Drilling N			ous Core		Sample		Jack S.		
CBYDALATBNII					Drill Rig					Sampling Method:				
	9 9							Initial Wa	er Level	Time St		N/A		
Ф В-39	Π	OFFICE			Ş			feet bgs		Time Start: N/A Time Stop: N/A				
0.00				-		Appr		tabilized W	ater Level		Diameter:	2.25 inch		
					ightrightarrows	11001		feet bgs	uter ziever	Boring Depth: 24 Feet				
	,	MURRAYE	OAD		Northing	N		Easting:	N/A		Elevat			
	L			[e]				Lasting.	1 1/ /	1	Elevat	ion.		
.B	ate	vel	set)	P.F.	Graphic	Represen	itation							
PID Reading (ppm)	Depth to Water (feet bgs)	Water Level	DEPTH (feet)	SOIL SAMPLE LOCATION	GRAVEL	FINES	SANDS	GROUP SYMBOL		FIELD NOTES				
			20	*						20-24' No	o Recovery.			
			21											
			22					_	Unknown					
			23											
			24								Bottom of Ho	le and Refusal at 24 feet.		
					-									
-														
]		I							

Comments: Initial groundwater level: 4.95 feet. Turbidity: High (sand). Color: Yellowish brown. Water samples taken at 5 and 24 feet.

	Boring Log						Soun Pacific				Client Boring 1 BO&T B-40				
Job Site/ A	ddress	Big	Foot Gas	s		Environ	mental (707) 2s	_	ervices	Job#:	SP-120	Sheet			
2801 Centr	ral Ave,	McK	inleyville	e, CA						Date:	2/9/2006	18 of 18			
Site M	lap and	Loca	tion of B	oring				ORMATI				INFORMATION			
		Ö			Drilling (nvironme	enta		Manager:	Andy Malone			
_ h		ñ			Rig Oper		Dave			Geologi		Mort Larsen			
B-40	6 G	7			Drilling I						Sampler: Jack S.				
B-40		_	٦		Drill Rig					Sampling Method:					
T		OFFICE									Time Start: N/A				
000						4		5 feet bg	Vater Level	Time S	top: Diameter:	N/A 2.25 in ab			
					brack	Аррі		feet bgs	vater Level	Boring		2.25 inch 12 Feet			
	,	MURRAYR	_						NI/						
	T	MURRAYE	DAD		Northing N/A Easting: N/A				IN/1	A	Elevatio	n: N/A			
PID Reading (ppm)	Depth to Water (feet bgs)	vel	eet)	SOIL SAMPLE LOCATION	Graphic	Represer	itation								
ead om)	.gq₁	Water Level	DEPTH (feet)	OIL SAMPLI LOCATION	EL	S S		1	ROUP	FIELD NOTES					
D R C	feer feer	ate	T di	ZC.	GRAVEL	FINES	SANDS	SY	MBOL	0-3' Asphalt/Base					
Ы	Del	=	Di	SO	GR	五	₹S								
			0												
		†								•					
		1	1					AB							
								AD							
2															
		↓	<u> </u>												
3								CL		mottles,		t brown to reddish brown w/ gray			
	4 *							<u> </u>			Recovery.				
							4-6 110 1	Recovery.							
		5													
		<u></u>		-					X Y 1						
		†	6					-	Unknown						
]													
		↓ ∤	7												
		↓						 _		0.1010					
		+	8	*						mottles,		ht brown to reddish brown w/ gray			
		+	9					CL		mottics,	no odor.				
		†						1							
		†	10							10-12' S	andy Clay, bluish	gray, slightly moist, organics and			
]						CL				nd increases with depth.			
]	11					CL							
			12	*				1			Bottom o	f Hole at 12 feet.			
		1	13	 				4							
		†	13	1											
		†	14	1											
		1													
]	15												
		↓													
			16	 		<u> </u>	<u> </u>	4							
		∤ ∤	17	 		-	 	-							
		†	1 /	1				1							
		†	18	1				1							
		†						1							
]	19		<u> </u>]							
		↓ ∤]							
			20												
Commen	ts: Init	ial gı	oundwa	iter level:	5.45 fee	t. Turbi	idity: M	Ioderate	. Color: Li	ght brov	wn. Water Sai	nple taken at ~ 6feet.			

Appendix B

March 13, 2006

SounPacific / Sounhein Environmental

P.O. Box 13

Kneeland, CA 95549

Attn: Greg Sounhein

RE: SP-120, Bigfoot Gas

Order No.: 0
Invoice No.: 5

0602220

56800

PO No.:

ELAP No. 1247-Expires July 2006

SAMPLE IDENTIFICATION

Fraction	Client Sample Description	
01A	B-37 @ 4'	_
01B	B-37 @ 4'	
02A	B-37 @ 10'	
02B	B-37 @ 10'	
03A	B-37 @ 15'	
03B	B-37 @ 15'	
04A	B-37 @ 20'	
04B	B-37 @ 20'	
05A	B-38 @ 4'	
05B	B-38 @ 4'	
06A	B-38 @ 8'	
06B	B-38 @ 8'	
07A	B-38 @ 12'	
07B	B-38 @ 12'	
A80	B-39 @ 4'	
08B	B-39 @ 4'	
09A	B-39 @ 10'	
09B	B-39 @ 10'	
10A	B-39 @ 15'	
10B	B-39 @ 15'	
11A	B-39 @ 20'	
11B	B-39 @ 20'	
12A	B-40 @ 4'	
12B	B-40 @ 4'	
13A	B-40 @ 8'	
13B	B-40 @ 8'	
14A	B-40 @ 12'	
14B	B-40 @ 12'	
	•	DT.

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director

5680 West End Road • Arcata California 95521-9202 • 707-822-4649 • FAX 707-822-6831

March 13, 2006

SounPacific / Sounhein Environmental P.O. Box 13

Kneeland, CA 95549

Attn: Greg Sounhein

RE: SP-120, Bigfoot Gas

SAMPLE IDENTIFICATION

15A	B-37 @ 5'
15D	B-37 @ 5'
16A	B-37 @ 24'
16D	B-37 @ 24'
17A	B-38 @ 6'
17D	B-38 @ 6'
18A	B-39 @ 5'
18D	B-39 @ 5'
19A	B-39 @ 24'
19D	B-39 @ 24'
20A	B-40 @ 6'
20D	B-40 @ 6'

Order No.: 0602220 Invoice No.: 56800

PO

ELAP No. 1247-Expires July 2006

North Coast Laboratories, Ltd.

SounPacific / Sounhein Environmental

CLIENT:
Project:

SP-120, Bigfoot Gas

Lab Order:

0602220

CASE NARRATIVE

Date: 13-Mar-06

TPH as Diesel/Motor Oil - Soil:

Sample B-40 @ 8' contains material similar to degraded or weathered diesel oil.

Samples B-37 @ 4', B-38 @ 8', B-39 @ 4' and B-40 @ 4' contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

Samples B-37 @ 10', B-38 @ 4' and B-39 @ 20' do not have the typical pattern of fresh motor oil. However, the results reported represent the amount of material in the motor oil range.

TPH as Diesel/Motor Oil - Water:

Samples B-37 @ 24', B-38 @ 6' and B-39 @ 5' contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

Samples B-38 @ 6', B-39 @ 5', B-39 @ 24' and B-40 @ 6' do not have the typical pattern of fresh motor oil. However, the results reported represent the amount of material in the motor oil range.

The laboratory control sample (LCS) recovery was above the upper acceptance limit for diesel. The laboratory control sample duplicate (LCSD) recovery was within the acceptable limits; therefore, the data were accepted.

Gasoline Components/Additives - Water:

The gasoline value for sample B-40 @ 6' is primarily from the reported gasoline additives.

Some reporting limits were raised for samples B-39 @ 24' and B-40 @ 6' due to matrix interference.

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-01A

Client Sample ID: B-37 @ 4'

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	1.1	1.0	μg/g	1.0	2/21/06	3/10/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/10/06

Client Sample ID: B-37 @ 4'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-01B

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	µg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	µg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1.4-Dichlorobenzene-d4	90.3	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-37 @ 10'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-02A

Test Name: TPH as Diesel/Motor Oil

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	1.0	µg/g	1.0	2/21/06	3/10/06
TPHC Motor Oil	12	10	μg/g .	1.0	2/21/06	3/10/06

13-Mar-06

WorkOrder: 0602220

Client Sample ID: B-37 @ 10'

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-02B

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xvlene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	91.1	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-37 @ 15'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-03A

Test Name: TPH as Diesel/Motor Oil

Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-03B

Client Sample ID: B-37 @ 15'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	Units	\mathbf{DF}	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	90.7	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-37 @ 20'

Lab ID: 0602220-04A

Received: 2/10/06

Collected: 2/9/06 0:00

Test Name: TPH as Diesel/Motor Oil

Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	ND	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	µg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-04B

Client Sample ID: B-37 @ 20'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	Limit	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	91.0	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-38 @ 4'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-05A

Test Name: TPH as Diesel/Motor Oil

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	19	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

Client Sample ID: B-38 @ 4'

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-05B

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	0.012	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	· ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	90.9	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	µg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-38 @ 8'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-06A

Test Name: TPH as Diesel/Motor Oil

Parameter .	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	1.1	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-06B

Client Sample ID: B-38 @ 8'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	µg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	93.1	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-38 @ 12'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-07A

Test Name: TPH as Diesel/Motor Oil

Parameter		Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)		ND	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	•	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-07B

Client Sample ID: B-38 @ 12'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	µg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	91.4	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-39 @ 4'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-08A

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	1.1	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-08B

Client Sample ID: B-39 @ 4'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND .	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	92.7	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-39 @ 10'

Lab ID: 0602220-09A

Received: 2/10/06

Collected: 2/9/06 0:00

Test Name: TPH as Diesel/Motor Oil

<u>Parameter</u>	Result	<u>Limit</u>	$\underline{\mathbf{Units}}$	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	18	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-09B

Client Sample ID: B-39 @ 10'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-buttyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzen e	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylen e	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	93.0	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	µg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-39 @ 15'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-10A

Test Name: TPH as Diesel/Motor Oil

Parameter Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
TPHC Diesel (C12-C22)	3.5	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

Client Sample ID: B-39 @ 15'

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-10B

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g ·	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	µg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	92.3	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Received: 2/10/06

ParameterResultLimitUnitsDFExtractedAnalyzedTPHC GasolineND1.0μg/g1.02/16/062/16/06

Client Sample ID: B-39 @ 20'

. . . .

Collected: 2/9/06 0:00

Lab ID: 0602220-11A

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	90	. 10	μg/g	10	2/21/06	3/10/06
TPHC Motor Oil	21	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-11B

Client Sample ID: B-39 @ 20'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	µg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	. 2/16/06	2/16/06
o-Xylen e	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	92.4	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter Parame	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-40 @ 4'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-12A

Test Name: TPH as Diesel/Motor Oil

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	1.8	1.0	µg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

Client Sample ID: B-40 @ 4'

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-12B

Test Name:	Gasoline	Components/.	Additives
------------	----------	--------------	-----------

Reference:	LUFT/EPA 8260B Modified	
------------	-------------------------	--

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0,020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Toluene	0.0089	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xvlene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	93.0	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter_	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	µg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-40 @ 8'

Lab ID: 0602220-13A

Received: 2/10/06

Collected: 2/9/06 0:00

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	Analyzed
TPHC Diesel (C12-C22)	1.3	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-13B

Client Sample ID: B-40 @ 8'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter Parame	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/16/06
Tert-butyl alcohol (TBA)	ND	0.50	µg/g	1.0	2/16/06	2/16/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/16/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Tert-amyl methyl ether (TAME)	ND	0.020	µg/g	1.0	2/16/06	2/16/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/16/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/16/06
Surrogate: 1,4-Dichlorobenzene-d4	92.7	80-120	% Rec	1.0	2/16/06	2/16/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter Parame	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/16/06

Client Sample ID: B-40 @ 12'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-14A

Test Name: TPH as Diesel/Motor Oil

Parameter	<u>Result</u>	<u>Limit</u>	Units	$\mathbf{\overline{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	1.0	μg/g	1.0	2/21/06	3/8/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/21/06	3/8/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-14B

Client Sample ID: B-40 @ 12'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/16/06	2/17/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/16/06	2/17/06
Di-isopropyl ether (DIPE)	ND	0.020	µg/g	1.0	2/16/06	2/17/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/16/06	2/17/06
Benzene	ND	0.0050	μg/g	1.0	2/16/06	2/17/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/16/06	2/17/06
Toluene	ND	0.0050	μg/g	1.0	2/16/06	2/17/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/16/06	2/17/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/16/06	2/17/06
o-Xylene	ND	0.0050	μg/g	1.0	2/16/06	2/17/06
Surrogate: 1,4-Dichlorobenzene-d4	93,3	80-120	% Rec	1.0	2/16/06	2/17/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	1.0	μg/g	1.0	2/16/06	2/17/06

Client Sample ID: B-37 @ 5'

Lab ID: 0602220-15A

Received: 2/10/06

Collected: 2/9/06 0:00

Reference: LUFT/EPA 8260B Modified Test Name: Gasoline Components/Additives

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		2/22/06
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		2/22/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/22/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/22/06
Benzene	ND	0.50	. μg/L	1.0		2/22/06
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/22/06
Toluene	ND	0.50	μg/L	1.0	•	2/22/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/22/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/22/06
m,p-Xylene	ND	0.50	μg/L	1.0	•	2/22/06
o-Xylene	ÑĎ	0.50	μg/L	1.0		2/22/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Surrogate: 1,4-Dichlorobenzene-d4	94.0	80.8-139	% Rec	1.0		2/22/06

13-Mar-06

WorkOrder: 0602220

Parameter

Test Name: TPH as Gasoline

Result

Result

ND

ND

ND

Limit 50 Units μg/L

 \mathbf{DF} 1.0

Reference: LUFT/EPA 8260B Modified

Extracted

ANALYTICAL REPORT

Analyzed 2/22/06

Client Sample ID: B-37 @ 5'

TPHC Gasoline

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-15D

TPHC Diesel (C12-C22)

TPHC Motor Oil

Parameter

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Limit 50

170

Units μg/L μg/L

DF 1.0 1.0

Extracted 2/15/06 2/15/06

Analyzed 2/16/06 2/16/06

Client Sample ID: B-37 @ 24'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-16A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		2/22/06
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		2/22/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/22/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	µg/L	1.0		2/22/06
Benzene	ND	0.50	μg/L	1.0		2/22/06
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/22/06
Toluene	ND	0.50	μg/L	1.0		2/22/06
1.2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/22/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/22/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/22/06
o-Xylene	ND	0.50	μg/L	1.0		2/22/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Surrogate: 1,4-Dichlorobenzene-d4	93.8	80.8-139	% Rec	1.0		2/22/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter TPHC Gasoline Result ND <u>Limit</u> 50 **Units** μg/L

 \mathbf{DF} 1.0

Extracted

Analyzed 2/22/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Client Sample ID: B-37 @ 24'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-16D

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter .	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	61	50	µg/L	1.0	2/15/06	2/16/06
TPHC Motor Oil	ND	170	μg/L	1.0	2/15/06	2/16/06

Client Sample ID: B-38 @ 6'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-17A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	6.5	1.0	μg/L	1.0		2/22/06
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		2/22/06
Di-isopropyl ether (DIPE)	ND	1.0	μ g /L	1.0		2/22/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/22/06
Benzene	ND	0.50	μg/Ľ	1.0		2/22/06
Tert-amyl methyl ether (TAME)	2.1	1.0	μg/L	1.0		2/22/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/22/06
Toluene	ND	0.50	μg/L	1.0		2/22/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/22/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/22/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/22/06
o-Xylene	ND	0.50	μg/L	1.0		. 2/22/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1.2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Surrogate: 1,4-Dichlorobenzene-d4	95.3	80.8-139	% Rec	1.0		2/22/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parame <u>ter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	ND	50	μg/L	1.0		2/22/06

Client Sample ID: B-38 @ 6'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-17D

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	Units	<u>DF</u>	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	8	4 50	μg/L	1.0	2/15/06	2/16/06
TPHC Motor Oil	19	170	μg/L	1.0	2/15/06	2/16/06

Page 16 of 19

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-18A

Client Sample ID: B-39 @ 5'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter_	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	4.9	1.0	μg/L	1.0		2/22/06
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		2/22/06
Di-isopropyl ether (DIPE)	ND	1.0	µg/L	1.0		2/22/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/22/06
Benzene	ND	0.50	μg/L	1.0		2/22/06
Tert-amyl methyl ether (TAME)	ND	1,0	μg/L	1.0		2/22/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/22/06
Toluene	ND	0.50	μg/L	1.0		2/22/06
1.2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/22/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/22/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/22/06
o-Xylene	ND	0.50	μg/L	1.0		2/22/06
1.3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Surrogate: 1,4-Dichlorobenzene-d4	94.5	80.8-139	% Rec	1.0		2/22/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	50	μg/L	1.0		2/22/06

Client Sample ID: B-39 @ 5'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-18D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	93	50	μg/L	1.0	2/15/06	2/16/06
TPHC Motor Oil	3.100	170	μg/L	1.0	2/15/06	2/16/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-19A

Client Sample ID: B-39 @ 24'

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	1.0		2/22/06
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		2/22/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/22/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/22/06
Benzene	ND	0.50	μg/L	1.0		2/22/06
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/22/06
Toluene	ND	0.50	μg/L	1.0		2/22/06
1.2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/22/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/22/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/22/06
o-Xylene	ND	0.50	μg/L	1.0		2/22/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1.4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Surrogate: 1,4-Dichlorobenzene-d4	95.5	80.8-139	% Rec	1.0		2/22/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	ND	50	μg/L	1.0		2/22/06

Client Sample ID: B-39 @ 24'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-19D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	ND	50	μg/L	1.0	2/15/06	2/16/06
TPHC Motor Oil	520	170	μg/L	1.0	2/15/06	2/16/06

13-Mar-06

WorkOrder: 0602220

ANALYTICAL REPORT

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-20A

Client Sample ID: B-40 @ 6'

Test Name:	Gasoline	Components/Additive:
regriyanie:	Casonino	Colliborioritrov radiaso.

Reference:	_UFT/EF	PA 8260B	Modified
------------	---------	----------	----------

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	76	1.0	μg/L	1.0		2/22/06
Tert-butyl alcohol (TBA)	ND	20	μg/L	1.0		2/22/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/22/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/22/06
Benzene	ND	0.50	μg/L	1.0		2/22/06
Tert-amyl methyl ether (TAME)	27	1.0	μg/L	1.0		2/22/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/22/06
Toluene	ND	0.50	μg/L	1.0		2/22/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/22/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/22/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/22/06
o-Xylene	ND	0.50	μg/L	1.0		2/22/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/22/06
Surrogate: 1,4-Dichlorobenzene-d4	96.6	80.8-139	% Rec	1.0		2/22/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	130	50	μg/L	1.0		2/22/06

Client Sample ID: B-40 @ 6'

Received: 2/10/06

Collected: 2/9/06 0:00

Lab ID: 0602220-20D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	50	μg/L	1.0	2/15/06	2/16/06
TPHC Motor Oil	260	170	μg/L	1.0	2/15/06	2/16/06

North Coast Laboratories, Ltd.

Date: 13-Mar-06

CLIENT:

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Method Blank

Sample ID MB-15190	Batch ID: 15190	Test Code	: 8260OXYS	Units: µg/g		Analysi	s Date 2/16	/06 6:25:00 AM	Prep D	ate 2/16/06	
Client ID:		Run ID:	ORGCMS3_0	060216A		SeqNo:	5714	54			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	0.025				3.000.00					
Tert-butyl alcohol (TBA)	ND	0.50									
Di-isopropyl ether (DIPE)	ND	0.020									
Ethyl tert-butyl ether (ETBE)	ND	0.020									
Benzene	ND	0.0050									
Tert-amyl methyl ether (TAME)	ND	0.020									
Toluene	ND	0.0050									
Ethylbenzene	ND	0.0050									
m,p-Xylene	ND	0.010									
o-Xylene	ND	0.0050									
1,4-Dichlorobenzene-d4	0.914	0.10	1.00	0	91.4%	80	120	0			

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Method Blank

Sample ID MB-2/22/06	Batch ID: R39915	Test Code:	8260OXYW	Units: µg/L		Analysis	Date 2/22	06 7:28:00 AM	Prep Da	ate	
Client ID:		Run ID:	ORGCMS3_0	060222A		SeqNo:	57334	1 6			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	1.0						•			
Tert-butyl alcohol (TBA)	ND	10									
Di-isopropyl ether (DIPE)	ND	1.0									
Ethyl tert-butyl ether (ETBE)	ND	1.0									
Benzene	ND	0.50									
Tert-amyl methyl ether (TAME)	ND	1.0									
1,2-Dichloroethane	ND	1.0									
Toluene	0.1821	0.50									J
1,2-Dibromoethane (EDB)	ND	1.0									
Chlorobenzene	ND	1.0									
Ethylbenzene	0.2374	0.50									J
m,p-Xylene	0.4025	0.50									J
o-Xylene	ND	0.50									
1,3-Dichlorobenzene	0.1010	1.0									J
1,4-Dichlorobenzene	ND	1.0									
1,2-Dichlorobenzene	ND	1.0		_			400	•			
1,4-Dichlorobenzene-d4	0.936	0.10	1.00	0	93.6%	. 81	139	0			
Sample ID MB-15190	Batch ID: 15190	Test Code	: GASS-MS	Units: μg/g		Analysis	Date 2/16	/06 6:25:00 AM	Prep Da	ate 2/16/06	
Client ID:		Run ID:	ORGCMS3_	060216B		SeqNo:	5714	85			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Gasoline	0.4047	1.0									J
Sample ID MB-2/22/06	Batch ID: R39914	Test Code	: GASW-MS	Units: µg/L		Analysi	s Date 2/22	2/06 7:28:00 AM	Prep D	ate	•••
Client ID:		Run ID:	ORGC8_060	222A		SeqNo:	5733	24			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Gasoline	27.52	50									J

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Method Blank

Sample ID MB-15218	Batch ID: 15218	Test Code:	TPHDMS	Units: µg/g		Analysis	s Date 3/8/0	06 1:32:40 PM	Prep Da	ate 2/21/06	
Client ID:		Run ID:	ORGC7_0603	308A		SeqNo:	5778	40			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22)	0.5573	1.0			- Transmi						J
TPHC Motor Oil	ND	10	•								
Sample ID MB-15178	Batch ID: 15178	Test Code:	TPHDMW	Units: µg/L		Analysis	s Date 2/16	/06 2:34:50 AM	Prep D	ate 2/15/06	
Client ID:		Run ID:	ORGC7_060	216C		SeqNo:	5727	86			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22)	ND	50	-1121-0-0-0-1-11		AND COURT						
TPHC Motor Oil	ND	170									

North Coast Laboratories, Ltd.

Date: 13-Mar-06

CLIENT:

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-15190	Batch ID: 15190	Test Code:	8260OXYS	Units: µg/g		Analysis	Date 2/16/	'06 3:01:00 AM	Prep Da	ate 2/16/06	
Client ID:		Run ID:	ORGCMS3_0	60216A		SeqNo:	5714	51			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Methyl tert-butyl ether (MTBE)	0.3968	0.025	0.400	0	99.2%	86	137	0			
Tert-butyl alcohol (TBA)	8.852	0.50	8.00	0	111%	43	185	0			
Di-isopropyl ether (DIPE)	0.3931	0.020	0.400	0	98.3%	80	137	0			
Ethyl tert-butyl ether (ETBE)	0.4288	0.020	0.400	0	107%	81	133	0			
Benzene	0.4163	0.0050	0.400	0	104%	74	137	0			
Tert-amyl methyl ether (TAME)	0.4358	0.020	0.400	0	109%	81	135	0			
Toluene	0.4287	0.0050	0.400	0	107%	69	139	0			
Ethylbenzene	0.4412	0.0050	0.400	0	110%	77	139	0			
m,p-Xylene	0.8923	0.010	0.800	0	112%	74	147	0			
o-Xylene	0.4531	0.0050	0.400	0	113%	62	147	0			
1,4-Dichlorobenzene-d4	0.935	0.10	1.00	0	93.5%	80	120	0			
Sample ID LCSD-15190	Batch ID: 15190	Test Code	: 8260OXYS	Units: µg/g		Analysis	Date 2/16	/06 3:27:00 AM	Prep Da	ate 2/16/06	
Client ID:		Run ID:	ORGCMS3_0)60216A		SeqNo:	5714	52			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Methyl tert-butyl ether (MTBE)	0.4033	0.025	0.400	0	101%	86	137	0.397	1.62%	20	
Tert-butyl alcohol (TBA)	9.039	0.50	8.00	0	113%	43	185	8.85	2.09%	20	
Di-isopropyl ether (DIPE)	0.4045	0.020	0.400	0	101%	-80	137	0.393	2.85%	20	
Ethyl tert-butyl ether (ETBE)	0.4411	0.020	0.400	. 0	110%	81	133	0.429	2.82%	20	
Benzene	0.4267	0.0050	0.400	0	107%	74	137	0.416	2.47%	20	
Tert-amyl methyl ether (TAME)	0.4541	0.020	0.400	0	114%	81	135	0.436	4.10%	20	
Toluene	0.4334	0.0050	0.400	0	108%	69	139	0.429	1.09%	20	
Ethylbenzene	0.4472	0.0050	0.400	0	112%	77	139	0.441	1.36%	20	
	0.9284	0.010	0.800	0	116%	74	147	0.892	3.97%	20	
m,p-Xylene							4.47	0.450	4 4004		
m,p-Xylene o-Xylene	0.4724	0.0050	0.400	0	118%	62	147	0.453	4.16%	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-06118	Batch ID: R39915	Test Code:	: 8260OXYW	Units: µg/L		Analysis	Date 2/22	/06 4:05:00 AM	Prep D	ate	
Client ID:		Run ID:	ORGCMS3_0	60222A		SeqNo:	57334	43			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Methyl tert-butyl ether (MTBE)	18.02	1.0	20.0	0	90.1%	80	120	0			
Tert-butyl alcohol (TBA)	373.1	10	400	0	93.3%	25	162	0			
Di-isopropyl ether (DIPE)	18.20	1.0	20.0	0	91.0%	80	120	0			
Ethyl tert-butyl ether (ETBE)	17.72	1.0	20.0	0	88.6%	77	120	0			
Benzene	18.52	0.50	20.0	0	92.6%	78	117	0			
Tert-amyl methyl ether (TAME)	19.41	1.0	20.0	0	97.0%	64	136	0			
1,2-Dichloroethane	19.65	1.0	20.0	0	98.2%	74	121	0			
Toluene	19.59	0.50	20.0	0	97.9%	80	120	0			
1,2-Dibromoethane (EDB)	19.15	1.0	20.0	0 -	95.7%	. 80	120	0			
Chlorobenzene	19.82	1.0	20.0	0	99.1%	80	120	0		•	
Ethylbenzene	18.84	0.50	20.0	0	94.2%	80	120	0			
m,p-Xylene	38.57	0.50	40.0	0	96.4%	80	120	0			
o-Xylene	21.08	0.50	20.0	0	105%	80	120	0			
1,3-Dichlorobenzene	20.27	1.0	20.0	0	101%	81	125	0			
1,4-Dichlorobenzene	20.13	1.0	20.0	0	101%	79	132	0			
1,2-Dichlorobenzene	19.72	1.0	20.0	0	98.6%	81	134	0			
1,4-Dichlorobenzene-d4	0.982	0.10	1.00	0	98.2%	81	139	0			

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID LCSD-06118	Batch ID: R39915	Test Code:	8260OXYW	Units: µg/L		Analysis	Date 2/22/	06 4:30:00 AM	Prep Da	ate	
Client ID:		Run ID:	ORGCMS3_0	60222A		SeqNo:	57334	14			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	18.09	1.0	20.0	0	90.4%	80	120	18.0	0.370%	20	
Tert-butyl alcohol (TBA)	380.2	10	400	0	95.0%	25	162	373	1.87%	20	
Di-isopropyl ether (DIPE)	18.20	1.0	20.0	0	91.0%	80	120	18.2	0.0408%	20	
Ethyl tert-butyl ether (ETBE)	17.81	1.0	20.0	0	89.1%	77	120	17.7	0.494%	20	
Benzene	18.25	0.50	20.0	0	91.2%	78	117	18.5	1.48%	20	
Tert-amyl methyl ether (TAME)	19.56	1.0	20.0	0	97.8%	64	136	19.4	0.786%	20	
1,2-Dichloroethane	19.35	1.0	20.0	0	96.7%	74	121	19.6	1.53%	20	
Toluene	19.36	0.50	20.0	0	96.8%	80	120	19.6	1.14%	20	
1,2-Dibromoethane (EDB)	19.60	1.0	20.0	0	98.0%	80	120	19.2	2.32%	20	
Chlorobenzene	19.63	1.0	20.0	0	98.2%	80	120	19.8	0.952%	20	
Ethylbenzene	18.60	0.50	20.0	0	93.0%	80	120	18.8	1.28%	20	
m,p-Xylene	38.33	0.50	40.0	0	95.8%	80	120	38.6	0.637%	20	
o-Xylene	20.89	0.50	20.0	0	104%	80	120	21.1	0.927%	20	
1,3-Dichlorobenzene	20.26	1.0	20.0	0	101%	81	125	20.3	0.0646%	20	
1,4-Dichlorobenzene	20.04	1.0	20.0	0	100%	79	132	20.1	0.459%	20	
1,2-Dichlorobenzene	19.97	1.0	20.0	0	99.9%	81	134	19.7	1.26%	20	
1,4-Dichlorobenzene-d4	0.977	0.10	1.00	0	97.7%	81	139	0.982	0.472%	20	
Sample ID LCSG-15190	Batch ID: 15190	Test Code:	: GASS-MS	Units: µg/g		Analysis	Date 2/16	/06 4:43:00 AM	Prep D	ate 2/16/06	
Client ID:		Run ID:	ORGCMS3_0)60216B		SeqNo:	5714	82			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Gasoline	20.34	1.0	20.0	0	102%	64	150	0			
Sample ID LCSDG-15190	Batch ID: 15190	Test Code	: GASS-MS	Units: μg/g		Analysi	s Date 2/16	6/06 5:09:00 AM	Prep D	ate 2/16/06	
Client ID:		Run ID:	ORGCMS3_0	060216B		SeqNo:	5714	83			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Gasoline	19.82	· 1.0	20.0	0	99.1%	64	150	20.3	2.56%	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-06119	Batch ID: R39914	Test Code:	GASW-MS	Units: µg/L		Analysis	Date 2/22/	06 5:46:00 AM	Prep Da	ate	
Client ID:		Run ID:	ORGC8_0602	222A		SeqNo:	57332	21			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Gasoline	978.4	50	1,000	0	97.8%	80	120	0			
Sample ID LCSD-06119	Batch ID: R39914	Test Code:	GASW-MS	Units: µg/L		Analysis	Date 2/22/	706 6:12:00 AM	Prep D	ate	
Client ID:		Run ID:	ORGC8_0602	222A		SeqNo:	57332	22			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Gasoline	971.8	50	1,000	0	97.2%	80	120	978	0.684%	20	
Sample ID L.CS-15218	Batch ID: 15218	Test Code:	TPHDMS	Units: µg/g		Analysis	Date 3/8/0	06 11:33:49 AM	Prep D	ate 2/21/06	
Client ID:		Run ID:	ORGC7_060	308A		SeqNo:	5778	37			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22)	9.294	1.0	10.0	0	92.9%	70	130	. 0			
TPHC Motor Oil	20.82	10	20.0	0	104%	70	130	0			
Sample ID LCSD-15218	Batch ID: 15218	Test Code:	TPHDMS	Units: µg/g		Analysis	Date 3/8/0	06 11:53:39 AM	Prep D	ate 2/21/06	
Client ID:		Run ID:	ORGC7_060	308A		SeqNo:	5778	38			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Diesel (C12-C22)	9.818	1.0	10.0	0	98.2%	70	130	9.29	5.48%	15	
TPHC Motor Oil	21.20	10	20.0	0	106%	70	130	20.8	1.82%	15	
Sample ID LCS-15178	Batch ID: 15178	Test Code:	TPHDMW	Units: µg/L		Analysis	s Date 2/16	/06 12:36:28 AM	Prep D	ate 2/15/06	•
Client ID:		Run ID:	ORGC7_060	216C		SeqNo:	5727	83			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Diesel (C12-C22)	629.0	50	500		126%	72	124	0			s
TPHC Motor Oil	960.4	170	1,000	0	96.0%	71	139	0			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

SounPacific / Sounhein Environmental

Work Order:

0602220

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID LCSD-15178	Batch ID: 15178	Test Code:	TPHDMW	Units: µg/L		Analysis	Date 2/16	/06 12:56:14 AM	Prep Da	ate 2/15/06	
Client ID:		Run ID:	ORGC7_0602	216C	•	SeqNo:	57278	34			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) TPHC Motor Oil	591.7 930.4	50 170	500 1,000	0 0	118% 93.0%	72 71	124 139	629 960	6.11% 3.18%	15 15	

	· -
(CA)	NORTH COAST
	LABORATORIES LTD.
	5680 West End Road • Arcata • CA 95521-9202

Chain of Custody

P.	1	of	2
_			

0602220

707-022-4049 Fax 707-022-0031		LABORATORY NUMBER:
Attention: Results & Invoice to: Sax Pacific Address: PD Box 13	PRESERVATIVE	TAT: 24 Hr 48 Hr 5 Day 5–7 Day STD (2–3 Wk) Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES
Kneeland, CA 95549 Phone: (707) 269-0884 Copies of Report to: greg @ soun pacific.com, andy Sounpacific.com, doe @ soun pacific.com Sampler (Sign & Print): Let Galace	CONTAINER 9, 11	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By://_ Final Report: FAX ☐ Verbal ☐ By://_
PROJECT INFORMATION Project Number:SP-120 Project Name:Big foot Gas	ANALYSIS T 4 OX 15 T 6/mo FEET ON 15 T 6/mo FEET ON 15 T 6/mo	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other
Purchase Order Number: LAB ID SAMPLE ID DATE TIME MATRIX*	X X X X X X X X X X X X X X X X X X X	SAMPLE CONDITION/SPECIAL INSTRUCTIONS
B-37@ 15' B-37@ 20' B-38@ 4' B-38@ 8' B-38@ 12'		
B-39 @ 4' B-39 @ 15' V		Global ID # 70602300259
RELINQUISHED BY (Sign & Print) DATE/TIME 2/10/06 0/1	RECEIVED BY (Sign) DATE/TIM 2/10/10 SCE	☐ NCL Disposal of Non-Contaminated ☐ Return ☐ Pickup
TAAATRIV DAY D. I. MAIN EEE EEE Lafte	L CIAL Conference CIAL Construction	SHIPPED VIA: UPS Air-Ex Fed-Ex Bus (land)

Chain of Custody

		LABORATORY NUMBER:
Attention:	d, q, b	TAT: 24 Hr 48 Hr 5 Day 5-7 Day STD (2-3 Wk) Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES
Phone: (707) 269 0884 Copies of Report to: ares @ sour pacific.com, andy @ sour pacific.com, dep @ sour pacific.com	9.11.14 1.14	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By://_ Final Report: FAX ☐ Verbal ☐ By://_
Sampler (Sign & Print):	ANALYSIS ANALYS	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO3; b—HCl; c—H2SO4; d—Na2S2O3; e—NaOH; f—C2H3O2Cl; g—other SAMPLE CONDITION/SPECIAL INSTRUCTIONS Global 10# 7060 2300 259
RELINQUISHED BY (Sign & Print) DATE/TIME Jeft (20185 2/10/06/24/0	RECEIVED BY (Sign) DATE/TIM	
TAATRIX DW D : 1: W = Est Est	1500	CHAIN OF CUSTODY SEALS Y/N/NA SHIPPED VIA: UPS Air-Ex Fed-Ex Bus (land)

^{*}MAIKIX: DW=Drinking Water; Ett=Ettluent; Int=Intluent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

SounPacific / Sounhein Environmental

P.O. Box 13

Kneeland, CA 95549

Attn: Greg Sounhein

RE: SP-120, Bigfoot Gas

Order No.: 0602102 Invoice No.: 56672

PO No.:

ELAP No. 1247-Expires July 2006

SAMPLE IDENTIFICATION

Fraction	Client Sample Description
01A	B-19 @ 5'
01D	B-19 @ 5'
02A	B-21 @ 4'
02D	B-21 @ 4'
03A	B-22 @ 10'
03D	B-22 @ 10'
04A	B-22 @ 15'
04D	B-22 @ 15'
05A	B-23 @ 9'
05D	B-23 @ 9'
06A	B-25 @ 4'
06D	B-25 @ 4'
07A	B-27 @ 4.5'
07D	B-27 @ 4.5'
A80	B-28 @ 4'
08D	B-28 @ 4'
09A	B-29 @ 6'
09D	B-29 @ 6'
10A	B-30 @ 5'
10D	B-30 @ 5'
11A	B-33 @ 5.5'
11D	B-33 @ 5.5'
12A	B-19 @ 2'
12B	B-19 @ 2'
13A	B-19 @ 4'
13B	B-19 @ 4'
14A	B-19 @ 8'
14B	B-19 @ 8'

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director

SounPacific / Sounhein Environmental P.O. Box 13 Kneeland, CA 95549

Attn: Greg Sounhein

RE: SP-120, Bigfoot Gas

SAMPLE IDENTIFICATION

B-21 @ 4' B-21 @ 4' B-22 @ 5' B-22 @ 5' B-22 @ 10' 15A 15B 16A 16B 17A B-22 @ 10' 17B B-22 @ 15' 18A B-22 @ 15' 18B B-22 @ 20' 19A B-22 @ 20' 19B B-22 @ 25' B-22 @ 25' B-22 @ 30' B-22 @ 30' 20A 20B 21A 21B B-23 @ 5' B-23 @ 5' B-23 @ 8' B-23 @ 8' 22A 22B 23A 23B 24A B-25 @ 2' B-25 @ 2' 24B B-25 @ 8' B-25 @ 8' B-25 @ 12' B-25 @ 12' 25A 25B 26A 26B B-27 @ 2' B-27 @ 2' 27A 27B B-27 @ 4' B-27 @ 4' B-27 @ 8' 28A 28B 29A

Order No.: 0602102 Invoice No.: 56672

PO

ELAP No. 1247-Expires July 2006

SounPacific / Sounhein Environmental

P.O. Box 13

Kneeland, CA 95549

Attn: Greg Sounhein

RE: SP-120, Bigfoot Gas

SAMPLE IDENTIFICATION

29B 30B 31A 31B 32A 32B 33A 33B 34A 35B 35B 36B 37A 37B 38A	B-27 @ 8' B-27 @ 12' B-28 @ 2' B-28 @ 10' B-28 @ 10' B-29 @ 2' B-29 @ 4' B-29 @ 4' B-29 @ 12' B-30 @ 2' B-30 @ 5' B-30 @ 5' B-30 @ 10'
37B	B-30 @ 5'
38B	B-30 @ 10'
39A	B-30 @ 15'
39B	B-30 @ 15'
40A	B-30 @ 20'
40B	B-30 @ 20'
41A	B-30 @ 25'
41B	B-30 @ 25'
42A	B-30 @ 30'
42B	B-30 @ 30'
43A	B-33 @ 2'
43B	B-33 @ 2'

Order No.: 0602102 Invoice No.: 56672

PO

ELAP No. 1247-Expires July 2006

SounPacific / Sounhein Environmental

P.O. Box 13

Kneeland, CA 95549

Attn: Greg Sounhein

RE: SP-120, Bigfoot Gas

SAMPLE IDENTIFICATION

44A B-33 @ 4' 44B B-33 @ 4' 45A B-33 @ 8' 45B B-33 @ 8' Order No.: 0602102 Invoice No.: 56672

PO

ELAP No. 1247-Expires July 2006

North Coast Laboratories, Ltd.

Date: 07-Mar-06

CLIENT:

SounPacific / Sounhein Environmental

Project:

SP-120, Bigfoot Gas

Lab Order:

0602102

CASE NARRATIVE

TPH as Diesel/Motor Oil - Soil:

Samples B-19 @ 2', B-22 @ 5', B-23 @ 5', B-23 @ 8', B-25 @ 2' and B-33 @ 2' contain material similar to degraded or weathered diesel oil.

Samples B-22 @ 20' and B-30 @ 5' contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

Sample B-23 @ 5' does not have the typical pattern of fresh motor oil. However, the result reported represents the amount of material in the motor oil range.

The motor oil result for sample B-19 @ 4' was reported as not detected (ND) with a dilution due to matrix interference.

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) run on 2/13/06 recoveries were above the upper acceptance limits for diesel. These recoveries indicate that the sample results may be erroneously high.

TPH as Diesel/Motor Oil - Water:

Samples B-22 @ 10' and B-22 @ 15' contain some material lighter than diesel. However, some of this material extends into the diesel range of molecular weights.

Sample B-19 @ 5' contains material similar to degraded or weathered diesel oil.

Samples B-21 @ 4', B-22 @ 10', B-22 @ 15', B-23 @ 9', B-29 @ 6' and B-30 @ 5' contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

Samples B-25 @ 4', B-27 @ 4.5', B-28 @ 4' and B-33 @ 5.5' are being reported as not detected (ND) for diesel oil with a dilution due to matrix interference.

Samples B-21 @ 4', B-22 @ 10', B-22 @ 15', B-25 @ 4', B-27 @ 4.5', B-28 @ 4', B-30 @ 5' and B-33 @ 5.5' do not have the typical pattern of fresh motor oil. However, the results reported represent the amount of material in the motor oil range.

Gasoline Components/Additives - Water:

Samples B-22 @ 10' and B-22 @ 15' appear to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported results represent the amount of material in the gasoline range.

The gasoline values for samples B-19 @ 5', B-25 @ 4', B-27 @ 4.5', B-29 @ 6', B-30 @ 5' and B-33 @

SounPacific / Sounhein Environmental

Project:

SP-120, Bigfoot Gas

Lab Order:

0602102

CASE NARRATIVE

5.5' include the reported gasoline components and additives in addition to other peaks in the gasoline range.

The gasoline value for sample B-28 @ 4' is primarily from the reported gasoline additives.

Sample B-25 @ 4 was reported as ND for ethylbenzene with a dilution due to limited sample volume.

Gasoline Components/Additives - Soil:

The gasoline values for samples B-22 @ 10' and B-27 @ 2' include the reported gasoline components in addition to other peaks in the gasoline range.

The gasoline value for sample B-29 @ 2' includes the reported gasoline additives in addition to other peaks in the gasoline range.

The gasoline value for sample B-30 @ 2' is primarily from the reported gasoline additives.

Some reporting limits were raised for sample B-22 @ 5' due to matrix interference.

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-01A

Client Sample ID: B-19 @ 5'

Test Name	Gasoline	Components/Additives
-----------	----------	----------------------

Dovomotor	Result	Limit	Units	$\mathbf{\underline{DF}}$	Extracted	Analyzed
<u>Parameter</u>				1.0	<u> </u>	2/10/06
Methyl tert-butyl ether (MTBE)	73	1.0	µg/L 			2/10/06
Tert-butyl alcohol (TBA)	ND	10	µg/L	1.0		
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/10/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	µg/L	1.0		2/10/06
Benzene	ND	0.50	μg/L	1.0		2/10/06
Tert-amyl methyl ether (TAME)	6.2	1.0	μg/L	1.0		2/10/06
1.2-Dichloroethane	ND	1.0	μg/L	1.0		2/10/06
Toluene	1.2	0.50	μg/L	1.0		2/10/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/10/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/10/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/10/06
m,p-Xylene	0.62	0.50	μg/L	1.0		2/10/06
o-Xylene	ND	0.50	μg/L	1.0	•	2/10/06
1.3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/10/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/10/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/10/06
Surrogate: 1,4-Dichlorobenzene-d4	109	80.8-139	% Rec	1.0		2/10/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

ul <u>t L</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
	 50	μg/L	1.0		2/10/06
94	50	μg/L	1.0))

Client Sample ID: B-19 @ 5'

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-01D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	520	500	μg/L	10	2/14/06	3/3/06
TPHC Motor Oil	20,000	1,700	µg/∟	10	2/14/06	3/3/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-02A

Client Sample ID: B-21 @ 4'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Reference:	LUFT/EPA	8260B Modified
------------	----------	----------------

Parameter	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
	ND	1.0	μg/L	1.0		2/12/06
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	1.0		2/12/06
Tert-butyl alcohol (TBA)		1.0		1.0		2/12/06
Di-isopropyl ether (DIPE)	ND		μg/L			2/12/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L 	1.0		2/12/06
Benzene	ND	0.50	μg/L	1.0		
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/12/06
1,2-Dichloroethane	ND	1.0	µg/L	1.0	•	2/12/06
Toluene	ND	0.50	µg/L	1.0		2/12/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1,0		2/12/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/12/06
	ND	0.50	μg/L	1.0		2/12/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/12/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/12/06
o-Xylene		1.0	μg/L	1.0		2/12/06
1,3-Dichlorobenzene	ND			1.0		2/12/06
1,4-Dichlorobenzene	ND	1.0	μg/L "			2/12/06
1,2-Dichlorobenzene	ND	1.0	µg/L	1.0		
Surrogate: 1,4-Dichlorobenzene-d4	107	80.8-139	% Rec	1.0		2/12/06

Test Name: TPH as Gasoline

				75.77	The store and a st	A alverad
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
1 ai aincici			11	4.0		2/12/06
TPHC Gasoline	ND	50	μg/L	1.0		21 12100

Client Sample ID: B-21 @ 4'

Lab ID: 0602102-02D

Received: 2/6/06

Reference: LUFT/EPA 8260B Modified

Collected: 2/2/06 0:00

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	280	50	µg/L	1.0	2/14/06	3/3/06
TPHC Motor Oil	860	170	μg/L	1.0	2/14/06	3/3/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Client Sample ID: B-22 @ 10'

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-03A

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	110	 50	μg/L	50		2/13/06
	120	10	μg/L	1.0		2/12/06
Tert-butyl alcohol (TBA)	ND	1.0	μg/L	1.0		2/12/06
Di-isopropyl ether (DIPE)		1.0	μg/L	1.0	*	2/12/06
Ethyl tert-butyl ether (ETBE)	1.9			1.0		2/12/06
Benzene	79 ·	0.50	µg/L			2/12/06
Tert-amyl methyl ether (TAME)	12	1.0	μg/L	1.0		
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/12/06
Toluene	120	25	µg/L	50		2/13/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/12/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/12/06
	870	25	μg/L	50	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2/13/06
Ethylbenzene	5,000	25	μg/L	50		2/13/06
m,p-Xylene	430	25	μg/L	50		2/13/06
o-Xylene		1.0	μg/L	1.0		2/12/06
1,3-Dichlorobenzene	ND		• -	1.0		2/12/06
1,4-Dichlorobenzene	ND	1.0	μg/L			2/12/06
1,2-Dichlorobenzene	ND	1.0	µg/L	1.0		
Surrogate: 1,4-Dichlorobenzene-d4	107	80.8-139	% Rec	1.0		2/12/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	23,000	2,500	μg/L	50		2/13/06

Client Sample ID: B-22 @ 10'

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-03D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	97	50	μg/L	1.0	2/14/06	3/3/06
TPHC Motor Oil	910	170	µg/L	1.0	2/14/06	3/3/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

R

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-04A

Client Sample ID: B-22 @ 15'

Tost Name	Gasoline	Components/Additives
Tect Name:	Casonine	Componential realists

Reference:	LUFT/EPA	8260B Modified
------------	----------	----------------

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	94	1.0	μg/L	1.0		2/12/06
Tert-butyl alcohol (TBA)	65	10	μg/L	1.0		2/12/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/12/06
Ethyl tert-butyl ether (ETBE)	1.4	1.0	μg/L	1.0		2/12/06
Benzene	22	0.50	μg/L	1.0		2/12/06
Tert-amyl methyl ether (TAME)	7.5	1.0	μg/L	1.0		2/12/06
1.2-Dichloroethane	ND	1.0	μg/L	1.0		2/12/06
Toluene	41	0.50	μg/L	1.0		2/12/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/12/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/12/06
Ethylbenzene	180	25	μg/L	50		2/13/06
m,p-Xylene	960	25	μg/L	50		2/13/06
o-Xylene	100	25	μg/L	50		2/13/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/12/06
1.4-Dichlorobenzene	ND	1.0	μg/L	1.0	•	2/12/06
***	ND	1.0	μg/L	1.0		2/12/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	107	80.8-139	% Rec	1.0		2/12/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	5,800	2,500	μg/L	50		2/13/06

Client Sample ID: B-22 @ 15'

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-04D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	92	50	μg/L	1.0	2/14/06	3/3/06
TPHC Motor Oil	640	170	μg/L	1.0	2/14/06	3/3/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-05A

Client Sample ID: B-23 @ 9'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Refe	rence: LUFI/E	=PA 8260E	Modified
mit	Units	\mathbf{DF}	Extra

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		2/13/06
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		2/13/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/13/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/13/06
Benzene	ND	0.50	μg/L	1.0		2/13/06
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/13/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/13/06
Toluene	0.79	0.50	μg/L	1.0		2/13/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/13/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/13/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/13/06
m,p-Xylene	0.58	0.50	μg/L	1.0		2/13/06
o-Xylene	ND	0.50	μg/L	1.0		2/13/06
1.3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
Surrogate: 1,4-Dichlorobenzene-d4	108	80.8-139	% Rec	1.0		2/13/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	,	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline		ND	50	μg/L	1.0		2/13/06

Client Sample ID: B-23 @ 9'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-05D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	210	50	μg/L	1.0	2/14/06	3/3/06
TPHC Motor Oil	1,500	170	μg/L	1.0	2/14/06	3/3/06

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-06A

Client Sample ID: B-25 @ 4'

Tost Name	Gasoline	Components/Additives
Teel value:	Casonina	Contiponionicon tagianes

Reference:	LUF	T/EPA 8260B	Modified
		70.75	301 4

Parameter	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	1,300	 50	μg/L	50		2/13/06
Tert-butyl alcohol (TBA)	43	10	μg/L	1.0		2/12/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/12/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/12/06
Benzene	14	0.50	μg/L	1.0		2/12/06
Tert-amyl methyl ether (TAME)	1.4	1.0	μg/L	1.0		2/12/06
1.2-Dichloroethane	ND	1.0	μg/L	1.0		2/12/06
Toluene	1.1	0.50	μg/L	1.0		2/12/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/12/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/12/06
Ethylbenzene	ND	1.0	μg/L	. 2.0		2/13/06
m,p-Xylene	1.1	1.0	µg/L	2.0		2/13/06
o-Xylene	ND	0.50	μg/L	1.0		2/12/06
1.3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/12/06
1.4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/12/06
1.2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/12/06
Surrogate: 1,4-Dichlorobenzene-d4	106	80.8-139	% Rec	1.0		2/12/06

Test Name: TPH as Gasoline

Reference:	LUFT/EPA 8260B Modified	
------------	-------------------------	--

T Cat I duties						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
TPHC Gasoline	1,200	50	μg/L	1.0		2/12/06

Client Sample ID: B-25 @ 4'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-06D

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	ND	500	μg/L	10	2/14/06	3/3/06
TPHC Motor Oil	7,700	1,700	μg/L	10	2/14/06	3/3/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Lab ID: 0602102-07A

Client Sample ID: B-27 @ 4.5'

Test Name: Gasoline Components/Ac	Additives
-----------------------------------	------------------

Test Name: Gasoline Components/Add	Iditives Reference: LUFT/EPA 8260B Modified					
Parameter .	Result	Limiţ	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
	88	1.0	μg/L	1.0		2/13/06
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	1.0		2/13/06
Tert-butyl alcohol (TBA)			, -	1.0		2/13/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L "			2/13/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		
Benzene	0.53	0.50	μg/L	1.0		2/13/06
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/13/06
•	ND	1.0	μg/L	1.0		2/13/06
1,2-Dichloroethane	1.0	0.50	μg/L	1.0		2/13/06
Toluene		1.0	μg/L	1.0		2/13/06
1,2-Dibromoethane (EDB)	ND			1.0		2/13/06
Chlorobenzene	ND	1.0	μg/L			2/13/06
Ethylbenzene	ND	0.50	μg/L	1.0		
m,p-Xylene	0.65	0.50	μg/L	1.0		2/13/06
o-Xylene	ND	0.50	μg/L	1.0	*	2/13/06
•	ND	1.0	μg/L	1.0		2/13/06
1,3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
1,4-Dichlorobenzene			• -	1.0		2/13/06
1,2-Dichlorobenzene	ND	1.0	μg/L			2/13/06
Surrogate: 1.4-Dichlorobenzene-d4	107	80.8-139	% Rec	1.0		21 13/00

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

1 Cat 1 dille.					*** 4 4 3	A a lease a al
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
	440	 50	μg/L	1.0		2/12/06
TPHC Gasoline	110	30	µg,∟	1		

Client Sample ID: B-27 @ 4.5'

Lab ID: 0602102-07D

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

	- ·	T *!4	Timita	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>Dr</u>	DAUMCICU	
	ND	500	μg/L	10	2/14/06	3/3/06
TPHC Diesel (C12-C22)				10	2/14/06	3/3/06
TPHC Motor Oil	5,100	1,700	μg/L	10	2/14/00	0/0/00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-28 @ 4' Lab ID: 0602102-08A

Toot Names	Gasoline	Components/Additives
LOCK NAME.	Gasonine	Oottipottottion taatavoo

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Test Marile. Caccinio Componenti						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Methyl tert-butyl ether (MTBE)	500	50	μg/L	50	•	2/13/06
Tert-butyl alcohol (TBA)	170	10	μg/L	1.0		2/13/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/13/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/13/06
Benzene	ND	0.50	μg/L	1.0	•	2/13/06
Tert-amyl methyl ether (TAME)	190	50	μg/L	50		2/13/06
1,2-Dichloroethane	ND	1.0	μg/L	1.0		2/13/06
Toluene	ND	0.50	μg/L	1.0		2/13/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/13/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/13/06
Ethylbenzene	ND	0.50	μg/L	1.0		2/13/06
m,p-Xylene	ND	0.50	μg/L	1.0		2/13/06
o-Xylene	ND	0.50	μg/L	1.0		2/13/06
1.3-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
1,4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
1,2-Dichlorobenzene	ND	1.0	μg/L	1.0		2/13/06
Surrogate: 1,4-Dichlorobenzene-d4	108	80.8-139	% Rec	1.0		2/13/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	<u>Analyzed</u>
TPHC Gasoline	790	50	μg/L	1.0		2/12/06

Client Sample ID: B-28 @ 4'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-08D

Test Name: TPH as Diesel/Motor Oil

Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
TPHC Diesel (C12-C22)	ND	500	μg/L	10	2/14/06	3/3/06
TPHC Motor Oil	4.200	1,700	μg/L	10	2/14/06	3/3/06

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-09A

Client Sample ID: B-29 @ 6'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components	/Additives	res Reference: LUFT/EPA 8260B Modified				
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	3,300	100	μg/L	100		2/13/06
Tert-butyl alcohol (TBA)	250	10	μg/L	1.0		2/12/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/12/06
• • •	30	1.0	μg/L	1.0		2/12/06
Ethyl tert-butyl ether (ETBE)	360	50	μg/L	100		2/13/06
Benzene	4.7	1.0	μg/L	1.0		2/12/06
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		2/12/06
1,2-Dichloroethane	8.5	0.50	μg/L	1.0		2/12/06
Toluene	ND	1.0	μg/L	1.0		2/12/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/12/06
Chlorobenzene	3.1	0.50	μg/L	1.0		2/12/06
Ethylbenzene	4.8	0.50	μg/L	1.0		2/12/06
m,p-Xylene		0.50	μg/L	1.0		2/12/06
o-Xylene	1.7	0.50	μg/L	1.0		2/12/06

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Reference: LUFT/EPA 8260B Modified **Extracted Analyzed** \mathbf{DF} **Units** Result <u>Limit</u> **Parameter** 2/12/06 μg/L 1.0 3,400 **TPHC Gasoline**

80.8-139

1.0

1.0

1.0

ND

ND

ND

106

μg/L

μg/L

μg/L

Received: 2/6/06

% Rec

1.0

1.0

1.0

1.0

Client Sample ID: B-29 @ 6'

Lab ID: 0602102-09D

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Test Name: TPH as Diesel/Motor Oil Extracted Analyzed DF Limit Units Result **Parameter** 1.0 2/14/06 3/3/06 μg/L 140 TPHC Diesel (C12-C22) 2/14/06 3/3/06 1.0 μg/L 440 170 TPHC Motor Oil

2/12/06

2/12/06

2/12/06

2/12/06

Collected: 2/3/06 0:00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-10A

Client Sample ID: B-30 @ 5

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

162f Maine: Gasonne Combonents von	2161400	ICICI				
Parame <u>ter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	3,300	100	μg/L	100		2/13/06
Tert-butyl alcohol (TBA)	270	10	μg/L	1.0		2/12/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/12/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		2/12/06
Benzene	9.1	0.50	μg/L	1.0		2/12/06
Tert-amyl methyl ether (TAME)	160	100	μg/L	100		2/13/06
1,2-Dichloroethane	ND	1.0	, μg/L	1.0		2/12/06
Toluene	2.5	0.50	μg/L	1.0		2/12/06
1.2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/12/06
Chlorobenzene	ND	1.0	μg/L	1.0		2/12/06
Ethylbenzene	0.87	0.50	μg/L	1.0		2/12/06
m,p-Xylene	3.4	0.50	μg/L	1.0		2/12/06
o-Xylene	1.3	0.50	μg/L	1.0		2/12/06
1.3-Dichlorobenzene	ND	1.0	µg/L	1.0		2/12/06
1.4-Dichlorobenzene	ND	1.0	μg/L	1.0		2/12/06
1.2-Dichlorobenzene	ND	1,0	µg/∟	1.0		2/12/06
Surrogate: 1,4-Dichlorobenzene-d4	108	80.8-139	% Rec	.1.0		2/12/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter Parame	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	2,700	50	μg/L	1.0		2/12/06

Client Sample ID: B-30 @ 5'

Lab ID: 0602102-10D

Received: 2/6/06

Collected: 2/3/06 0:00

Test Name: TPH as Diesel/Motor Oil

Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	160	50	μg/L	1.0	2/14/06	3/3/06
TPHC Motor Oil	420	170	μg/L	1.0	2/14/06	3/3/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-11A

Client Sample ID: B-33 @ 5.51

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Test Name.	Result	Limit	Uni <u>ts</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>				50	 -	2/13/06
Methyl tert-butyl ether (MTBE)	170	50	μg/L	1.0		2/12/06
Tert-butyl alcohol (TBA)	34	10	μg/L 			2/12/06
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		2/12/06
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		
Benzene	22	0.50	μg/L .	1.0		2/12/06
Tert-amyl methyl ether (TAME)	86	1.0	μg/L	1.0		2/12/06
	ND	1.0	μg/L	1.0		2/12/06
1,2-Dichloroethane	2.0	0.50	μg/L	1.0		2/12/06
Toluene	ND	1.0	µg/L	1.0		2/12/06
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1.0		2/12/06
Chlorobenzene	5.9	0.50	μg/L	1.0		2/12/06
Ethylbenzene		0.50	μg/L	1.0		2/12/06
m,p-Xylene	14		• -	1.0		2/12/06
o-Xylene	ND	0.50	μg/L	1.0		2/12/06
1,3-Dichlorobenzene	ND	1.0	μg/L			2/12/06
1,4-Dichlorobenzene	ND	1.0	µg/L ∵	1.0		2/12/06
1,2-Dichlorobenzene	ND	1.0	µg/L	1.0		
Surrogate: 1,4-Dichlorobenzene-d4	104	80.8-139	% Rec	1.0		2/12/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Test Name: 1111 de Cacomio				70.77	Entracted	Analyzed
TO	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	Allalyzeu
<u>Parameter</u>			ua/l	1.0		2/12/06
TPHC Gasoline	800	50	μg/L	1.0		

Client Sample ID: B-33 @ 5.5'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-11D

Test Name: TPH as Diesel/Motor Oil

I COL I IMMIO.	- •	T 1	TImite	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>Dr</u>		
	ND	500	μg/L	10	2/14/06	3/3/06
TPHC Diesel (C12-C22)				10	2/14/06	3/3/06
TPHC Motor Oil	3,700	1,700	μg/L	10		

07-Mar-06

WorkOrder: 0602102

Received: 2/6/06

Collected: 2/2/06 0:00

Collected: 2/2/06 0:00

ANALYTICAL REPORT

Client Sample ID: B-19 @ 2'

Lab ID: 0602102-12A

Test Name	Gasoline Components/Additives	Refer	ence: LUFT/	EPA 8260B	Modified
restrance.		w,	Timita	\mathbf{DF}	Extrac
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>Dr.</u>	17Att 40
1 al allicter				4.0	2/12/

Test Name: Gasonile Components	7014	Timit	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
<u>Parameter</u>	<u>Result</u>	<u>Limit</u>		_	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	· ·	
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)		0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND			1.0	2/13/06	2/14/06
Toluene	ND	0.0050	μg/g		2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g ·	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0		
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
	ND	0.010	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene			•	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g		2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	91.2	80-120	% Rec	1.0	2/10/00	2.14700

Test Name: TPH as Gasoline	Reference: LUFT/EPA 8260B Modified						
Parameter	Result	<u>Limit</u>	Units	<u>DF</u>	Extracted 2/13/06	<u>Analyzed</u> 2/14/06	
TPHC Gasoline	ND	1.0	hg/g	1.0	2/10/00	2,11,00	

Client Sample ID: B-19 @ 2'

Lab ID: 0602102-12B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Received: 2/6/06

Test Name: 11 11 do Biocommons			WT 14	10.17	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	
	12	1.0	μg/g	1.0	2/9/06	2/13/06
TPHC Diesel (C12-C22)	1.2			1.0	2/9/06	2/13/06
TPHC Motor Oil	ND	10	μg/g	1.0		

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Client Sample ID: B-19 @ 4' Lab ID: 0602102-13A

Test Name	Gasoline	Components/Additives

Reference:	LUF	T/EPA 8260B Modified	
		TOTAL Trustees	

Test Name: Gasonile Compensiones		* • • •	YT-14a	TO TE	Extracted	Analyzed
Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>		2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/13/06	
Tert-butyl alcohol (TBA)	МD	0.50	µg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
-	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.020	µg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)		0.0050	ha/a	1.0	2/13/06	2/14/06
Chlorobenzene	ND		•	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	ha\a	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	hā\ā		2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0		2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	
Surrogate: 1,4-Dichlorobenzene-d4	91.7	80-120	% Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

1 est Manic.			TT ! 4	\mathbf{DF}	Extracted	Analyzed
Parameter Parameter	Resu <u>lt</u>	<u>Limit</u>	<u>Units</u>	<u>Dr</u>	Extracted	
1 al allicter		1.0	μg/g	1.0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	P9/9			

Client Sample ID: B-19 @ 4'

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-13B

Test Name: TPH as Diesel/Motor Oil

10001	- 1	T !!4	Timita	\mathbf{DF}	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>171</u>		
	ND	1.0	μg/g	1.0	2/9/06	2/21/06
TPHC Diesel (C12-C22)				10	2/9/06	2/14/06
TPHC Motor Oil	ND	100	μg/g	10		

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Collected: 2/2/06 0:00

Lab ID: 0602102-14A

Client Sample ID: B-19 @ 8'

Test Nome	Gasoline	Components/Additives

Test Name: Gasoline Components/Add	itives	Refere	ence: LUFT/I	EPA 8260B	Modified	
10001,555	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Parameter Native dated by the other (MTRE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1,0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene		0.0050	pg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050		1.0	2/13/06	2/14/06
m,p-Xylene	ND		μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g /a	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g		2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	91.3	80-120	% Rec	1.0	2/13/00	2114/00

Test Name: TPH as Gasoline

	75. 14	T 224	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	Units	<u>DI</u>	1	
	ND	1 0	μg/g	1.0	2/13/06	2/14/06
TPHC Gasoline	IND	1.0	F3.3			

Client Sample ID: B-19 @ 8'

Lab ID: 0602102-14B

Test Name: TPH as Diesel/Motor Oil

				\/_D^	00450
Reference:	EPA	3550/GCFID	(LUF I)/EPA	ROLDR

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Test Name: Will de Biocommotor					27 4 4 3	A 1 a al
<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
	ND	1.0	μg/g	1.0	2/9/06	2/13/06
TPHC Diesel (C12-C22)				1.0	2/9/06	2/13/06
TPHC Motor Oil	ND	10	hg/a	1.0	2/0/00	_,

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Collected: 2/2/06 0:00

Client Sample ID: B-21 @ 4'

Lab ID: 0602102-15A

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components/Add	itives	Reference: LUFT/EPA 8260B Modified				
2001	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter (MTRE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	NĎ	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene		0.0030	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND			1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	, ND	0.0050	μg/g a/a	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	92.0	80-120	% Rec	1.0	2/10/00	

Test Name: TPH as Gasoline

Test Maine.				20.00	Ti-tuo atad	Analyzed
Devemotor	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	Anaryzeu
<u>Parameter</u>			uala	1 0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	hā/ā	1.0	2, 10.00	

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Client Sample ID: B-21 @ 4'

Lab ID: 0602102-15B

Test Name:	TPH as Diesel/Motor Oil			Reference:	EPA 3550/0	SCFID(LUF	L)/EPA 80	15B
T CSt I (MILLO)			~	т.		ND F	vtracted	Δ

TOST LIMITED	T.	T 234	Tinite	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>			
TPHC Diesel (C12-C22)	ND	1.0	µg/g	1.0	2/9/06	2/13/06
TPHC Diesei (C12-C22)	ND	10	μg/g	1.0	2/9/06	2/13/06
TPHC Motor Oil	ND	10	ру/9			

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Collected: 2/2/06 0:00

Lab ID: 0602102-16A

Client Sample ID: B-22 @ 5'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components/Addi	tives	Reference: LUFT/EPA 8260B Modified				
10001144	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Parameter MTRE	0.072	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	µg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND ND	0.0030	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene		0.0050	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND			1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	92.6	80-120	% Rec	1.0	۵, ۱۵, ۵۵	

Test Name: TPH as Gasoline

Test Name.			WT 1/	10.17	Extracted	Analyzed
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Hilalyzeu
<u>rarameter</u>		1.0	μg/g	1.0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	pg/9			

Client Sample ID: B-22 @ 5'

Lab ID: 0602102-16B

Test Name: TPH as Diesel/Motor Oil

Reference:	EPA 3550/GCFID(LUFT)/EPA 8015B

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Test Name: 1111 de Biocomment			** **	10.17	Extracted	Analyzed
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Allalyzeu
	4.8	1.0	μg/g	1.0	2/9/06	2/13/06
TPHC Diesel (C12-C22)		1.0			2/9/06	2/13/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/3/00	2, .0/00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Collected: 2/2/06 0:00

Lab ID: 0602102-17A

Client Sample ID: B-22 @ 10'

nents/Additives
1

Test Name: Gasoline Components/Add	litives	tives Reference: LUFT/EPA 8260B Modified				
7 000 1 (422220	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter (MTRE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	hā\ā	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)		0.020	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.0030		1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND		μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g ·		2/13/06	2/14/06
Chlorobenzene	ND	0.0050	hg/g	1.0		2/14/06
Ethylbenzene	0.016	0.0050	μg/g	1.0	2/13/06	
m,p-Xylene	0.20	0.010	µg/g	1.0	2/13/06	2/14/06
o-Xylene	0.041	0.0050	µg/g	1.0	2/13/06	2/14/06
1.3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1.4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	94.0	80-120	% Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

Analyzed Extracted **Units** \mathbf{DF} <u>Limit</u> Result Parameter 1.0 2/13/06 2/14/06 μg/g 1.6 1.0 TPHC Gasoline

Client Sample ID: B-22 @ 10'

Lab ID: 0602102-17B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

1 est Mame.	_	,	YT 34	10.15	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzeu
	ND	1.0	μg/g	1.0	2/9/06	2/13/06
TPHC Diesel (C12-C22)	• • • •		•	1.0	2/9/06	2/13/06
TPHC Motor Oil	ND	10	μg/g	1.0	2,0,00	

07-Mar-06

WorkOrder: 0602102

Client Sample ID: B-22 @ 15'

Lab ID: 0602102-18A

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Test Name: Gasoline Components/Additives

Reference:	LUFT/EPA	8260B Modified
------------	----------	----------------

Test Haine.	Dogult	Li <u>mit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	Result				2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	ha\a	1.0		2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/13/06	
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
	ND ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene				1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	µg/g			2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	
m,p-Xylene	ND	0.010	µg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene			% Rec	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	92.7	80-120	70 IVEC	1.0		

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Test Name.				70.77	E-t-costad	Analyzad
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
1 ai anictei		1.0	μg/g	1.0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	P9/9			

Client Sample ID: B-22 @ 151

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-18B

Test Name: TPH as Diesel/Motor Oil

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{ extbf{DF}}$	Extracted	<u>Analyzed</u>
	 ND	1.0	μg/g	1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)	ND	10	μg/g	1.0	2/9/06	2/14/06
TPHC Motor Oil						

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Client Sample ID: B-22 @ 20' Lab ID: 0602102-19A

Test Name:	Gasoline	Components/Additives	
------------	----------	----------------------	--

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Test Marine.	Dogult	Lim <u>it</u>	Units	$\underline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	Result				2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	hā\ā	1.0		2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/13/06	
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1,0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)				1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g		2/13/06	2/14/06
m,p-Xylene	ND	0.010	hā/ā	1.0		2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	
1,3-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/13/06	2/14/06
1.4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	92.4	80-120	% Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Test Maine.				TATE	Ti-tuo atad	hazwlank
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter			uala	1 0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	μg/g	1.0		•

Client Sample ID: B-22 @ 20'

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-19B

Test Name: TPH as Diesel/Motor Oil

	T 324	Tinito	, DE	Extracted	Analyzed
Result	Limit	Units	<u>Dr</u>		
12	1.0	ug/g	1.0	2/9/06	2/14/06
			1.0	2/9/06	2/14/06
ND	10	µg/g	1.0	2/0/00	
	Result 1.2 ND	1.2 1.0	1.2 1.0 µg/g	1.2 1.0 µg/g 1.0	1.2 1.0 µg/g 1.0 2/9/06

07-Mar-06

WorkOrder:

o-Xylene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

TPHC Gasoline

Parameter

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/2/06 0:00

Lab ID: 0602102-20A

Client Sample ID: B-22 @ 25'

Test Name:	Gasoline Components/Additives	
	m	1

Test Name: Gasoline Components/A	dditives	Refer	ence: LUFT/	EPA 8260B	Modified	d			
2,000 2 (1,000-1)	Result	Limit	Units	\mathbf{DF}	Extracted	Analyzed			
<u>Parameter</u>	ND	0.025	μg/g	1.0	2/13/06	2/14/06			
Methyl tert-butyl ether (MTBE)	ND ND	0.50	μg/g	1.0	2/13/06	2/14/06			
Tert-butyl alcohol (TBA)		0.020	µg/g	1.0	2/13/06	2/14/06			
Di-isopropyl ether (DIPE)	ND		•	1.0	2/13/06	2/14/06			
Ethyl tert-butyl ether (ETBE).	ND .	0.020	μg/g	1.0	2/13/06	2/14/06			
Benzene	ND	0.0050	μg/g ,		2/13/06	2/14/06			
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0		2/14/06			
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/13/06				
Toluene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06			
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/13/06	2/14/06			
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06			
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06			
Ethylbenzene	ND	0.010	μg/g	1.0	2/13/06	2/14/06			
m,p-Xylene	מא	0.010	na/a	1.0	2/13/06	2/14/06			

0.0050

0.0050

0.0050

0.0050

80-120

10

ND

ND

ND

ND

92.9

ND

Result

Result

ND

ND

Test Name: TPH as Gasoline

Parameter

Surrogate: 1,4-Dichlorobenzene-d4

Reference: LUFT/EPA 8260B Modified

μg/g

μg/g

μg/g

μg/g

% Rec

Analyzed Extracted Units $\underline{\mathbf{DF}}$ **Limit** 2/14/06 1.0 2/13/06 1.0 μg/g

1.0

1.0

1.0

1.0

Client Sample ID: B-22 @ 25'

Lab ID: 0602102-20B

TPHC Diesel (C12-C22)

TPHC Motor Oil

Test Name: TPH as Diesel/Motor Oil

Received: 2/6/06

μg/g

Collected: 2/2/06 0:00

2/13/06

2/13/06

2/13/06

2/13/06

2/14/06

2/14/06

2/14/06

2/14/06

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B **Analyzed** \mathbf{DF} **Extracted Units** Limit 2/14/06 2/9/06 1.0 1.0 μg/g 2/14/06 2/9/06

1.0

Page 20 of 45

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Collected: 2/2/06 0:00

Collected: 2/2/06 0:00

Lab ID: 0602102-21A

Client Sample ID: B-22 @ 30'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components/Addit	ives	Reference: LUFT/EPA 8260B Modified				
Parameter	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
	ND	0.025	µg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)		0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND		·	1.0	2/13/06	2/14/06
Benzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	hã/ã		2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	µg/g	1.0		2/14/06
Toluene	ND	0.0050	μg/g	1.0	2/13/06	
1,2-Dibromoethane (EDB)	ND	0.020	µg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/13/06	2/14/06
u v	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	94.2	80-120	% Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline

I COL I (ILLIANO)				75.77	Ti-duce seed	Analyzed
Parameter	Resul <u>t</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzeu
1 al ameter	<u></u>		uala	1.0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	µg/g	1.0	27.0700	

Client Sample ID: B-22 @ 30'

Lab ID: 0602102-21B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B Test Name: TPH as Diesel/Motor Oil

1 CSt 1 (dille.			TT 14	TATE	Extracted	Analyzed
<u>Parameter</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	Allalyzeu
	ND	1.0	μg/g	1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)				1.0	2/9/06	2/14/06
TPHC Motor Oil	ND	10	µg/g	1.0	2,0,00	

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Client Sample ID: B-23 @ 5' Lab ID: 0602102-22A

nponents/Additives

Test Name: Gasoline Components/A	Name: Gasoline Components/Additives		Reference: LUFT/EPA 8260B Modified			
	Result	Lim <u>it</u>	Uni <u>ts</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND ND	0.50	hā\ā	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	, . –	0.020	hā\a	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	ha\a	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND			1.0	2/13/06	2/14/06
Benzene	ND	0.0050	µg/g /~	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g		2/13/06	2/14/06
_	ND	U USU	ua/a	1.0	Zi 10/00	<u>_</u> , , ,, ,, ,,

Ethyl tert-butyl ether (ETBE)	טא	0.020	P9'8			
	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene (TANE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	•	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND				2/13/06	2/14/06
Toluene	ND	0.0050	μg/g	1.0		2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/13/06	
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene				1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g		2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0		
1.3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene		•••	% Rec	1.0	2/13/06	2/14/06
o a d. d. Diablarabanzana d4	93.1	80-120	70 KeC	1.0	_, .0.00	

Surrogate: 1,4-Dichlorobenzene-d4

Test Name: TPH as Gasoline		Refer	ence: LUFT/	EPA 8260B	Modified	
Parameter	Result	<u>Limit</u>	Units	<u>DF</u> 1.0	Extracted 2/13/06	<u>Analyzed</u> 2/14/06
TPHC Gasoline	ND	1.0	μg/g	1.0	2/10/00	

80-120

Received: 2/6/06

Client Sample ID: B-23 @ 5'

Lab ID: 0602102-22B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B Test Name: TPH as Diesel/Motor Oil

93.1

1 cst i tallic.		T 1 14	TImita	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>			2/14/06
TPHC Diesel (C12-C22)	3.5	1.0	μg/g	1.0	2/9/06	
•	11	10	μg/g	1.0	2/9/06	2/14/06
TPHC Motor Oil	• •		, 0 0			

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-23 @ 8'

Lab ID: 0602102-23A

Test Name:	Gasoline Components/Additives	Reference:	LUFT/EPA 8260B Modified

Test Warne.	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>				1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g α/α	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g ···ਕ/a	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.0050	hg\a		2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g ·	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	µg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.0050	ha\a	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	NĎ	0.020	hā\ā	1.0		2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	µg/g	1.0	2/13/06	2/14/06
m.p-Xylene	ND	0.010	µg/g	1.0	2/13/06	
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	91.8	80-120	% Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline

Analyzed Extracted <u>DF</u> **Units** Limit Result **Parameter** 2/14/06 2/13/06 1.0 μg/g 1.0 ND TPHC Gasoline

Client Sample ID: B-23 @ 8'

Lab ID: 0602102-23B

TPHC Motor Oil

Received: 2/6/06

Reference: LUFT/EPA 8260B Modified

Collected: 2/3/06 0:00

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B **Analyzed** Extracted \mathbf{DF} **Units** Limit Result **Parameter** 2/14/06 2/9/06 1.0 μg/g 1.0 1.3 TPHC Diesel (C12-C22) 2/14/06 2/9/06 1.0 10 μg/g ND

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Client Sample ID: B-25 @ 2' Lab ID: 0602102-24A

Toot Nome	Gasoline	Components/Additives

Refer	ence: LUFT/E	-PA 8260B	Modified
mit.	Tinite	DE	Extra

Reference: LUFT/EPA 8260B Modified

Test Marine.	Result	Limit	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>				1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	0.050	0.025	μg/g		2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	ha\a ha\a	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	µg/g	1.0		
Ethyl tert-butyl ether (ETBE)	ND	0.020	µg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	· ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)		0.0050	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND			1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	ha\a		2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0		
1,3-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/13/06	2/14/06
· ·	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	92.6	80-120	% Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline

lest Name.			TT 1/	TATE	Extracted	Analyzed
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzeu
Farameter		4.0	uala	1.0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	μg/g	1.0		

Client Sample ID: B-25 @ 2'

Lab ID: 0602102-24B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Received: 2/6/06

Test Name: TPH as Diesel/Motor Oil		Refer	ence: EPA 3	550/GCFID	(LUFT)/EPA 80	JD
Test ivalue.	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	2.2	1.0	μg/g	1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)	ND	10	μg/g	1.0	2/9/06	2/14/06
TPHC Motor Oil		,				

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-25A

Client Sample ID: B-25 @ 8'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components/Add	ditives	es Reference: LUFT/EPA 8260B Modified						
1000110000	Result	Limit	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed		
Parameter (MTRE)	0.11	0.025	μg/g	1.0	2/13/06	2/14/06		
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/13/06	2/14/06		
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/13/06	2/14/06		
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06		
Ethyl tert-butyl ether (ETBE)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06		
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06		
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06		
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06		
Toluene		0.020	µg/g	1.0	2/13/06	2/14/06		
1,2-Dibromoethane (EDB)	ND	0.020	ha\a	1.0	2/13/06	2/14/06		
Chlorobenzene	ND	0.0050		1.0	2/13/06	2/14/06		
Ethylbenzene	ND		μg/g	1.0	2/13/06	2/14/06		
m,p-Xylene	ND	0.010	μg/g	1.0	2/13/06	2/14/06		
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06		
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06		
1,4-Dichlorobenzene	ND	0.0050	μg/g		2/13/06	2/14/06		
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0		2/14/06		
a L. 4.4 Diablerahanzana di	93.0	80-120	% Rec	1.0	2/13/06	2/14/00		

80-120

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

	T 14	T !!4	TInite	\mathbf{DF}	Extracted
Parameter Parame	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>D1</u>	Batractea
I al ameter		4.0	uala	1.0	2/13/06
TPHC Gasoline	ND	1.0	μg/g	1.0	

93.0

Client Sample ID: B-25 @ 8'

Lab ID: 0602102-25B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Reference: LUFT/EPA 8260B Modified

Test Hanic.			·	TO TO	Extracted	Analyzed
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Allalyzeu
	 ND	1.0	μg/g	1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)		40		1.0	2/9/06	2/14/06
TPHC Motor Oil	ND	10	ha/a	1.0	_,0,00	

Analyzed 2/14/06

Collected: 2/3/06 0:00

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Analyzed

Lab ID: 0602102-26A

Client Sample ID: B-25 @ 12'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components/Ad	Gasoline Components/Additives			Reference: LUFT/EPA 8260B Modified				
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted			
Methyl tert-butyl ether (MTBE)	0.16 ND	0.025	hā\ā	1.0 1.0	2/13/06 2/13/06			

Parameter	Kesuit	1,111111	CALLUS			
	0.16	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	µg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)		0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND			1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g ··«/«	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g		2/13/06	2/14/06
Toluene	ND	0.0050	hā\ā	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	ha\a	1.0		2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	92.7	80-120	% Rec	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	JZ.1					

Test Name: TPH as Gasoline

1 CSt 1 (unit)			~~ ·,	TOY	Extunated	hazwlank
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
r ar ameter	· · · · · · · · · · · · · · · · · · ·		uala	1 0	2/13/06	2/14/06
TPHC Gasoline	ND	1.0	μg/g	1.0	2, 10,00	

Client Sample ID: B-25 @ 12'

Lab ID: 0602102-26B

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Test Name: TPH as Diesel/Motor Oil	Reference: EPA 3550/GCFID(LUFT)/EPA 8015B					
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	1.0	μg/g ·	1.0	2/9/06 2/9/06	2/14/06 2/14/06
TPHC Motor Oil	ND	10	µg/g	1.0	2/9/00	2/14/00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-27A

Client Sample ID: B-27 @ 2'

Test Nome	Gasoline	Components/Additives
TOCK NAME.	Cascillic	Componion to the

Refere	ence: LUFT/E	PA 8260E	Modified
mit	Units	DF	Extra

Test Name: Gasonic compension			~~ · · ·	10.10	Extracted	Analyzed
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)		0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND			1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g		2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0		2/14/06
Toluene	ND	0.0050	μg/g	1.0	2/13/06	
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	0.054	0.010	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
o-Xylene		0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND			1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	hg/g		2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0		2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	95.7	80-120	% Rec	1.0	2/13/06	2/ 14/00

Tost Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Test Name.			• /	75.Td	Extunated	Analwand
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>			vala	1.0	2/13/06	2/14/06
TDHC Gasoline	1,1	1.0	μg/g	1.0	2	

Client Sample ID: B-27 @ 2'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-27B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

	Result	Limit	<u>Units</u>	\mathbf{DF}	<u>Extracted</u>	<u>Analyzed</u>
<u>Parameter</u>	Result				2/9/06	2/14/06
TPHC Diesel (C12-C22)	ND	1.0	μg/g	1.0	2/9/00	2/14/00
(PAC Diesei (C12-C22)		40	uala	1.0	2/9/06	2/14/06
TRHC Motor Oil	ND	10	μg/g	1.0		

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-27 @ 4' Lab ID: 0602102-28A

Toot Name:	Gasoline Components/Additive	es
LOCK NOTHEY	Casolino Companion	

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Test Marie.	1014	Limit	Units	$\overline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
<u>Parameter</u>	Result			1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g ,	1.0	2/13/06	2/14/06
Benzene	ND	0.0050	ha\a ha\a	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g ·		2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	hā\ā	1.0	2/13/06	2/14/06
Toluene	ND	0.0050	μg/g ·	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	µg/g ∙	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	ha/a	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	µg/g	1.0		2/14/06
1,3-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	93.8	80-120	% Rec	1.0	2/13/06	Zi 14/06

Test Name: TPH as Gasoline

Reference:	LUFT/EPA 8260	OB Modified
------------	---------------	-------------

Test Name: 1111 do Gassinio	1/	T famile	Unit <u>s</u>	\mathbf{DF}	Extracted	<u>Analyzed</u>
Parameter TPHC Gasoline	<u>Result</u> ND	<u>Limit</u> 1.0	ha\a	1.0	2/13/06	2/14/06

Client Sample ID: B-27 @ 4'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-28B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

1 CSt I talkie.	70 14 /	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>	Result		µg/g	1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)	ND	1.0		1.0	2/9/06	2/14/06
TPHC Motor Oil	ND	10	μg/g			

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Client Sample ID: B-27 @ 8' Lab ID: 0602102-29A

Treet Norma	Gasoline	Components/Additives
Toct Name	Gasonne	COMPONENTALITYCO

Test Name: Gasoline Components/Addi	tives	Refer	ence: LUFT/E	EPA 8260B	Modified	
2000 1 (11111111111111111111111111111111	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter (ATRE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0030	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene		0.0050	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND			1.0	2/13/06	2/14/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	ND 93.4	0.0050 80-120	µg/g % Rec	1.0	2/13/06	2/14/06

Test Name: TPH as Gasoline	Reference: LUFT/EPA 8260B Modified					
Parameter TPHC Gasoline	<u>Result</u> ND	<u>Limit</u> 1.0	<u>Units</u> μg/g	<u>DF</u> 1.0	Extracted 2/13/06	<u>Analyzed</u> 2/14/06

Client Sample ID: B-27 @ 8'

Lab ID: 0602102-29B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

	Result	Limit	<u>Units</u>	\mathbf{DF}	<u>Extracted</u>	<u>Analyzed</u>
<u>Parameter</u>				1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)	ND	1.0	μg/g			
TDUC Motor Oil	· ND	10	μg/g	1.0	2/9/06	2/14/06

Received: 2/6/06

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-27 @ 12' Lab ID: 0602102-30A

Test Norma	Gasoline	Components/Additives
LACT NATHE	Casonina	Componential teams

Reference:	LUFT/EPA 8260B Modified	
	and the second s	

Test Marine.	Dagult	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	Result			1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	ha\a		2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	µg/g	1.0		
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Toluene		0.020	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND			1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	hā\ā	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	hg\a		2/13/06	2/14/06
m,p-Xylene	ND	0.010	µg/g	1.0		
o-Xylene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
•	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	94.3	80-120	% Rec	1.0	2/13/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	94.5	00-120	,, ,,,,,			

Test Name: TPH as Gasoline

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Test Maine.				~~~	177 44 m. I	Amalyzad
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{D}}\mathbf{F}$	<u>Extracted</u>	<u>Analyzed</u>
ranameter			uala	1.0	2/13/06	2/14/06
TDUC Casoline	ND	1.0	μg/g	1.0		

Client Sample ID: B-27 @ 12'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-30B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

200021111111111111111111111111111111111	75 74	Y imaid	Tinite	\mathbf{DF}	Extracted	Analyzed
Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>Dr</u>		
	ND	1.0	μg/g	1.0	2/9/06	2/14/06
TPHC Diesel (C12-C22)	• • •	40	,	1.0	2/9/06	2/14/06
TRHC Motor Oil	ND	10	µg/g	1.0	2/3/00	2, 1 00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-28 @ 2' Lab ID: 0602102-31A

West Norma	Gasoline	Components/Additives

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Test Name: Gasonic compensions	Dogult	Limit	Units	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>	Result			1.0	2/13/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/13/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/13/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Benzene	ND	0.0050	μg/g ···~/~	1.0	2/13/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	µg/g a/a	1.0	2/13/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Toluene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/13/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/13/06	2/14/06
o-Xylene	ND	0.0050	μg/g ·		2/13/06	2/14/06
1.3-Dichlorobenzene	ND	0.0050	μg/g ·	1.0	2/13/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/13/06	2/14/06
1,2-Dichlorobenzene	ИD	0.0050	μg/g	1.0		2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	94.2	80-120	% Rec	1.0	2/13/06	21,4100

Test Name: TPH as Gasoline

esoline	Reference: LUFT/EPA 8260B Modified
---------	------------------------------------

Test Name: 1Ph	as Gasonne			YT 14.	\mathbf{DF}	Extracted	Analyzed
<u>Parameter</u>		Result ND	<u>Limit</u> 1.0	<u>Units</u> µg/g	<u>DF</u> 1.0	2/13/06	2/14/06
TPHC Gasoline		ND		, 0 0			

Client Sample ID: B-28 @ 2'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-31B

Test Name: TPH as Diesel/Motor Oil	Reference: EPA 3550/GCFID(LUFT)/EPA 8015B						
Parameter TPHC Diesel (C12-C22) TPHC Motor Oil	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	<u>Analyzed</u>	
	ND	1.0	µg/g	1.0	2/9/06	2/14/06	
	ND	10	µg/g	1.0	2/9/06	2/14/06	

07-Mar-06

WorkOrder: 0602102

Received: 2/6/06

ANALYTICAL REPORT

Collected: 2/3/06 0:00

Client Sample ID: B-28 @ 10'

Lab ID: 0602102-32A

Reference: LUFT/EPA 8260B Modified

Reference: LUFT/EPA 8260B Modified

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Received: 2/6/06

704 NT	Gasoline Components/Add	itives	Refer	ence: LUFT/E	PA 8260B	Modified	
Test Name:	Gasolino Componentian	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>		ND	0.025	μg/g	1.0	2/14/06	2/14/06
	utyl ether (MTBE)		0.50	μg/g	1.0	2/14/06	2/14/06
Tert-butyl ald		ND	0.020	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl		ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-but	tyl ether (ETBE)	ND			1.0	2/14/06	2/14/06
Benzene		ND	0.0050	μg/g g/g	1.0	2/14/06	2/14/06
Tert-amyl m	ethyl ether (TAME)	ND	0.020	μg/g ···σ/σ	1.0	2/14/06	2/14/06
1,2-Dichloro	ethane	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Toluene		ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,2-Dibromo	ethane (EDB)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Chlorobenze		ND	0.0050	ha\a ha\a		2/14/06	2/14/06
Ethylbenzen		ND	0.0050	ha\a	1.0	2/14/06	2/14/06
m,p-Xylene	•	ND	0.010	ha/a	1.0	2/14/06	2/14/06
o-Xylene		ND	0.0050	ha\a	1.0	2/14/06	2/14/06
1,3-Dichloro	benzene	ND	0.0050	μg/g	1.0		2/14/06
1,4-Dichloro		ŅD	0.0050	μg/g	1.0	2/14/06	2/14/06
1,2-Dichlore		ND	0.0050	μg/g	1.0	2/14/06	
	e: 1,4-Dichlorobenzene-d4	89.9	80-120	% Rec	1.0	2/14/06	2/14/06

Test Name: TPH as Gasoline

Extracted \mathbf{DF} **Units** <u>Limit</u> Result Parameter 1.0 2/14/06 μg/g 1.0 ND **TPHC Gasoline**

Client Sample ID: B-28 @ 10'

Lab ID: 0602102-32B

Test Name: TPH as Diesel/Motor Oil

Analyzed Extracted DF **Units** Limit Result **Parameter** 2/10/06 3/2/06 1.0 1.0 μg/g ND TPHC Diesel (C12-C22) 3/2/06 2/10/06 1.0 μg/g 10 ND TPHC Motor Oil

Page 32 of 45

Analyzed

2/14/06

Collected: 2/3/06 0:00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Client Sample ID: B-29 @ 2' Lab ID: 0602102-33A

Teet Name	Gasoline	Components/Additives
Test Name:	Gasonine	Componentes realistes

Test Name: Gasoline Components/Add	litives	Refer	ence: LUFT/E	EPA 8260B	Modified	
200021000000	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter (ATDE)	0.038	0.025	µg/g	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	0.0069	0.0050	μg/g	1.0	2/14/06	2/14/06
Benzene	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dichloroethane	ND ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Toluene	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Ethylbenzene	ND ND	0.010	µg/g	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,4-Dichlorobenzene	ND ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	89.5	80-120	% Rec	1.0	2/14/06	2/14/06

Test Name: TPH as Gasoline

Test Name: 1111 de Cassimis			TT 1/	DE	Extracted	Analyzed
Parameter Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	2/14/06	2/14/06
TPHC Gasoline	3.2	1.0	μg/g	1.0	2/ 14/06	2114100

Reference: LUFT/EPA 8260B Modified

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Received: 2/6/06

Client Sample ID: B-29 @ 2'

Lab ID: 0602102-33B

Test Name: TPH as Diesel/Motor Oil

Test Name:			** **	7577	Extracted	Analyzed
Doromotor	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Maryzeu
<u>Parameter</u>		1.0	μg/g	1.0	2/10/06	3/2/06
TPHC Diesel (C12-C22)	ND			4.0	2/10/06	3/2/06
TPHC Motor Oil	ND	10	µg/g	1.0	2/10/00	0,2,00

Page 33 of 45

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Client Sample ID: B-29 @ 4'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-34A

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Reference: LUFT/EPA 8260B Modified	
------------------------------------	--

T CDE I (MANAGE	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>		0.025	μg/g	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	0.059			1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	hā\ā		2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	-	2/14/06
Benzene	ND	0.0050	μg/g	1.0	2/14/06	
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/14/06	2/14/06
· •	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Toluene	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050	hā/ā	1.0	2/14/06	2/14/06
Ethylbenzene		0.010	μg/g	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
o-Xylene	ND			1.0	2/14/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g ·····/~	1.0	2/14/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	µg/g		2/14/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	μg/ġ	1.0	- ,	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	90.5	80-120	% Rec	1.0	2/14/06	2/14/00

Test Name: TPH as Gasoline	Reference: LUFT/EPA 8260B Modified					
	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Parameter TRUC Gasolina	ND	1.0	μg/g	1.0	2/14/06	2/14/06

Client Sample ID: B-29 @ 4'

Lab ID: 0602102-34B

Received: 2/6/06

Collected: 2/3/06 0:00

Test Name: TPH as Diesel/Motor Oil	Reference: EPA 3550/GCFID(LUFT)/EPA 8015B						
Test Name: IPH as Diesel/Motor Oil Parameter	Result	<u>Limit</u>	<u>Units</u> µg/g	<u>DF</u> 1.0	Extracted 2/10/06	Analyzed 3/2/06	
TPHC Diesel (C12-C22) TPHC Motor Oil	ND ND	1.0 10	μg/g μg/g	1.0	2/10/06	3/2/06	

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Client Sample ID: B-29 @ 12'

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Lab ID: 0602102-35A

Tost Name	Gasoline	Components/Additives
-----------	----------	----------------------

Test Name: Gasoline Components/Add	itives	Reference: LUFT/EPA 8260B Modified					
I OB LI (ALLIEU)	Result	Limit	Units	DF	Extracted	Analyzed	
<u>Parameter</u>	0.23	0.025	μg/g	1.0	2/14/06	2/14/06	
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/14/06	2/14/06	
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
Di-isopropyl ether (DIPE)	ND ND	0.020	μg/g	1.0	2/14/06	2/14/06	
Ethyl tert-butyl ether (ETBE)	0.037	0.0050	μg/g	1.0	2/14/06	2/14/06	
Benzene	0.037 ND	0.020	μg/g	1.0	2/14/06	2/14/06	
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
Toluene	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
Chlorobenzene	ND	0.0050	µg/g	1.0	2/14/06	2/14/06	
Ethylbenzene	ND	0.010	μg/g	1.0	2/14/06	2/14/06	
m,p-Xylene	ND ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
o-Xylene	ND ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	92.2	80-120	% Rec	1.0	2/14/06	2/14/06	

Test Name: TPH as Gasoline

Test Name:	- • <i>,</i>	T !!4	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>	Result	<u>Limit</u> 1.0	ug/g	1.0	2/14/06	2/14/06
TPHC Gasoline	ND	1.0	רטיט			

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Client Sample ID: B-29 @ 12'

Lab ID: 0602102-35B

Test Name: TPH as Diesel/Motor Oil	Reference: EPA 3550/GCFID(LUFT)/EPA 8015B						
Test Name: TPH as Diesel/Motor Oil Parameter TPHC Diesel (C12-C22) TPHC Motor Oil	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	Analyzed	
	ND	1.0	µg/g	1.0	2/10/06	3/2/06	
	ND	10	µg/g	1.0	2/10/06	3/2/06	

Page 35 of 45

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-30 @ 2' Lab ID: 0602102-36A

Test Norma	Gasoline	Components/Additives
TACT NOTHE	Gasonine	Componenter

Reference: LUFT/EPA 8260B Modified						
Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extrac			
0.025	ug/g	1.0	2/14/0			
0.020	,		614.416			

Test Name: Gasoline Componenta/Add	LIVOO	700					
	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>	
<u>Parameter</u>		0.025	<u>——</u> μg/g	1.0	2/14/06	2/14/06	
Methyl tert-butyl ether (MTBE)	0.30	0.50	ha\a	1.0	2/14/06	2/14/06	
Tert-butyl alcohol (TBA)	ND			1.0	2/14/06	2/14/06	
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
Ethyl tert-butyl ether (ETBE)	ND	0.020	ha\a		2/14/06	2/14/06	
Benzene	ND	0.0050	ha\a	1.0	2/14/06	2/14/06	
Tert-amyl methyl ether (TAME)	0.074	0.020	μg/g	1.0		2/14/06	
1,2-Dichloroethane	ND	0.020	hg/g	1.0	2/14/06		
•	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
Toluene	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
1,2-Dibromoethane (EDB)	ND	0.0050	µg/g	1.0	2/14/06	2/14/06	
Chlorobenzene	0.0056	0.0050	μg/g	1.0	2/14/06	2/14/06	
Ethylbenzene	ND	0.010	μg/g	1.0	2/14/06	2/14/06	
m,p-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
o-Xylene		0.0050	μg/g	1.0	2/14/06	2/14/06	
1,3-Dichlorobenzene	ND			1.0	2/14/06	2/14/06	
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,2-Dichlorobenzene	ND	0.0050	μg/g		2/14/06	2/14/06	
Surrogate: 1,4-Dichlorobenzene-d4	93.4	80-120	% Rec	1.0	2/14/00	2, 1, 1, 00	

Test Name: TPH as Gasoline

Reference:	LUFT/EPA	8260B	Modified
------------	----------	-------	----------

Test Name: IPH as Gasonile						
1 est 1 tame.	D	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	<u>Analyzed</u>
<u>Parameter</u>	Result	7.111111111111111111111111111111111111	hā/ā	1.0	2/14/06	2/14/06
TPHC Gasoline	1.2	1.0	ha.a			

Client Sample ID: B-30 @ 2'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-36B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Test Name.		~,	T1340	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>		2/10/06	3/2/06
TPHC Diesel (C12-C22)	6.0	1.0	μg/g	1.0		3/2/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/10/06	3/2/00

07-Mar-06

0602102 WorkOrder:

ANALYTICAL REPORT

Client Sample ID: B-30 @ 5' Lab ID: 0602102-37A

Received: 2/6/06

Peference: LUFT/EPA 8260B Modified

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: Gasoline Components/Add	Reference: Lot Well Moderne					
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Methyl tert-butyl ether (MTBE)	0.33	0.025	μg/g	1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Benzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/14/06	2/14/06
	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Toluene 1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050	µg/g	1.0	2/14/06	2/14/06
Ethylbenzene	ND	0.010	μg/g	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,4-Dichlorobenzene	ND	0,0050	μg/g	1.0	2/14/06	2/14/06
1,2-Dichlorobenzene	94.1	80-120	% Rec	1.0	2/14/06	2/14/06

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

Analyzed <u>Units</u> $\overline{\mathbf{DF}}$ **Extracted** Limit Result **Parameter** 2/14/06 2/14/06 1.0 1.0 μg/g TPHC Gasoline

Client Sample ID: B-30 @ 51

Lab ID: 0602102-37B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Test Name: TPH as Diesel/Motor Oil	Reference: EPA 3550/GCFID(LUF1)/EPA 8015				158	
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	1.5	1.0	μg/g	1.0	2/10/06	3/2/06
TPHC Motor Oil	ND	10	μg/g	1.0	2/10/06	3/2/06

07-Mar-06

WorkOrder:

m,p-Xylene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

o-Xylene

0602102

ANALYTICAL REPORT

Received: 2/6/06

μg/g

μg/g

μg/g

μg/g

μg/g

Received: 2/6/06

% Rec

Reference: LUFT/EPA 8260B Modified

Collected: 2/3/06 0:00

2/14/06

2/14/06

2/14/06

2/14/06

2/14/06

Collected: 2/3/06 0:00

2/14/06

2/14/06

2/14/06

2/14/06

2/14/06

Lab ID: 0602102-38A

Client Sample ID: B-30 @ 10'

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name.	Result	Limit	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	Analyzed
<u>Parameter</u>			•	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	0.074	0.025	μg/g			
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	• • • •			1.0	2/14/06	2/14/06
Benzene	ND	0.0050	μg/g			2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	
	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dichloroethane		0.0050	μg/g	1.0	2/14/06	2/14/06
Toluene	ND			1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g			
Chlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Ethylbenzene	ND	0.000	na/a	1.0	2/14/06	2/14/06
	NII 3	0.000	uu/u	1.0	_, , ,,	

0.010

0.0050

0.0050

0.0050

0.0050

80-120

ND

ND

ND

ND

ND

92.4

1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4

Reference: LUFT/EPA 8260B Modified

1.0

1.0

1.0

1.0

1.0

Test Name: TPH as Gasoline Analyzed **Extracted Units** \mathbf{DF} Limit Result **Parameter** 2/14/06 1.0 2/14/06 μg/g ND 1.0 TPHC Gasoline

Client Sample ID: B-30 @ 10'

Lab ID: 0602102-38B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B Test Name: TPH as Diesel/Motor Oil

Analyzed \mathbf{DF} **Extracted Units** Limit Result **Parameter** 3/2/06 2/10/06 1.0 μg/g ND 1.0 TPHC Diesel (C12-C22) 3/2/06 2/10/06 μg/g 1.0 10 ND TPHC Motor Oil

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-30 @ 15' Lab ID: 0602102-39A

Test Name:	Gasoline Components/Additives
	R

Reference:	LUFT/EPA 8260B Modified	t
------------	-------------------------	---

Test Name: Gasonia Company	7014	Lim <u>it</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
<u>Parameter</u>	Result	0.025	μg/g	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	· · · · · · · · · · · · · · · · · · ·	ьа,а hg/g	1.0	2/14/06	2/14/06
Benzene	ND	0.0050	µg/g µg/g	1.0	2/14/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	• = -	1.0	2/14/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g μg/g	1.0	2/14/06	2/14/06
Toluene	ND	0.0050	µg/g	1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	hā\ā	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050	•	1.0	2/14/06	2/14/06
Ethylbenzene	ND	0.0050	hā\ā hā\ā	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/14/06	2/14/06
o-Xylene	ND	0.0050	μg/g μg/g	1.0	2/14/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	µg/g µg/g	1.0	2/14/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g μg/g	1.0	2/14/06	2/14/06
1,2-Dichlorobenzene	ND	0.0050	ру/у % Rec	1.0	2/14/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	93.1	80-120	70 1760			
					ro a a	

Test Name: TPH as Gasoline

Reference:	LUFT/EPA 8260B Modified
------------	-------------------------

Test Name: TPH as Gasoline		Keter chee.				
Test Name: TPH as Gasoline	D14	Limit	Units	\mathbf{DF}	Extracted	<u>Analyzed</u>
<u>Parameter</u>	<u>Result</u> ND	<u>1.011111</u> 1.0	μg/g	1.0	2/14/06	2/14/06
TPHC Gasoline	ND	,,,_	, 5-5			

Client Sample ID: B-30 @ 15'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-39B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Test Name: 1PH as Diesel/Motor On	~ 14	T imit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter TPHC Diesel (C12-C22) TPHC Motor Oil	<u>Result</u> ND ND	<u>Limit</u> 1.0 10	hā\ā hā\ā	1.0	2/10/06 2/10/06	3/2/06 3/2/06

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

c LUET/EDA 8260B Modified

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Client Sample ID: B-30 @ 20'

Lab ID: 0602102-40A

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Test Name: G	asoline Components/Add	ditives Reference: LUF 1/EPA 0200B Woullieu						
Parameter		Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>	
	-th-au (MTDE)	ND	0.025	μg/g	1.0	2/14/06	2/14/06	
Methyl tert-butyl		ND	0.50	μg/g	1.0	2/14/06	2/14/06	
Tert-butyl alcoho			0.020	μg/g	1.0	2/14/06	2/14/06	
Di-isopropyl ethe		ND		*	1.0	2/14/06	2/14/06	
Ethyl tert-butyl e	ther (ETBE)	ND	0.020	μg/g			2/14/06	
Benzene		ND	0.0050	μg/g	1.0	2/14/06		
Tert-amyl methy	l ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
1,2-Dichloroetha		ND	0.020	μg/g	1.0	2/14/06	2/14/06	
•	116	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
Toluene	(EDD)	ND	0.020	μg/g	1.0	2/14/06	2/14/06	
1,2-Dibromoetha	ine (EDB)	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
Chlorobenzene				•	1.0	2/14/06	2/14/06	
Ethylbenzene		ND	0.0050	, ha\a		2/14/06	2/14/06	
m,p-Xylene		ND	0.010	µg/g	1.0			
o-Xylene		ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,3-Dichloroben	zene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
•		ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,4-Dichloroben		ND	0.0050	μg/g	1.0	2/14/06	2/14/06	
1,2-Dichloroben			80-120	% Rec	1.0	2/14/06	2/14/06	
Surrogate: 1,	4-Dichlorobenzene-d4	93.6	00-120	/6 1100	1.0			

Test Name: TPH as Gasoline

Extracted Analyzed $\underline{\mathbf{DF}}$ <u>Units</u> Result Limit **Parameter** 2/14/06 2/14/06 μg/g 1.0 1.0 ND TPHC Gasoline

Client Sample ID: B-30 @ 20'

Lab ID: 0602102-40B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B Test Name: TPH as Diesel/Motor Oil

Result	<u>Limit</u>	<u>Units</u>	$\overline{ ext{DF}}$	Extracted	<u>Analyzed</u>
ND	1.0	μg/g	1.0	2/10/06	3/2/06
ND	10	μg/g	1.0	2/10/06	3/2/06
	ND	ND 1.0	ND 1.0 μg/g	ND 1.0 μg/g 1.0	ND 1.0 µg/g 1.0 2/10/06

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-30 @ 25' Lab ID: 0602102-41A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Test Name: Gasoline Components/Addition		Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter Parameter	Result		-	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025	μg/g	1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Benzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	hā\ā hā\a	1.0	2/14/06	2/14/06
1,2-Dichloroethane	ND	0,020	μg/g	1.0	2/14/06	2/14/06
Toluene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050 0.0050	μg/g	1.0	2/14/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/14/06	2/14/06
o-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/14/06	2/14/06
1,2-Dichlorobenzene	ND 00.4	80-120	% Rec	1.0	2/14/06	2/14/06
Surrogate: 1,4-Dichlorobenzene-d4	93.1	50-120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Test Name: TPH as Gasoline

Result

Reference: LUFT/EPA 8260B Modified **Units** <u>Limit</u>

μg/g

1.0

ND

Result

ND

ND

 $\overline{\mathbf{DF}}$ 1.0

Analyzed Extracted 2/14/06 2/14/06

Client Sample ID: B-30 @ 25'

Lab ID: 0602102-41B

Parameter

TPHC Gasoline

TPHC Motor Oil

Received: 2/6/06

μg/g

Collected: 2/3/06 0:00

Test Name: TPH as Diesel/Motor Oil

Parameter TPHC Diesel (C12-C22)

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B **Units** Limit μg/g 1.0

10

<u>DF</u> 1.0 1.0

Analyzed Extracted 3/2/06 2/10/06 3/2/06 2/10/06

Page 41 of 45

07-Mar-06

WorkOrder:

0602102

ANALYTICAL REPORT

Client Sample ID: B-30 @ 30'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-42A

Test Name: Gasoline Com	ponents/Additives
-------------------------	-------------------

Test Name: Gasoline Components	/Additives	Refer	ence: LUFT/	EPA 8260B	Modified	
10501(00000	Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
<u>Parameter</u>	ND	0.025	μg/g	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.020	hā/ā	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.0050	hā\ā	1.0	2/14/06	2/14/06
Benzene		0.0030	μg/g	1.0	2/14/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Toluene	ND	0.0030	р9/9 µg/g	1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND		• = -	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/14/06	2/14/06
o-Xylene	ND	0.0050	μg/g ,		2/14/06	2/14/06
1.3-Dichlorobenzene	ND	0.0050	μg/g	٠ 1.0	2/14/00	0/44/00

0.0050

0.0050

80-120

ND

ND

93.3

ND

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Result **Parameter** TPHC Gasoline

Reference: LUFT/EPA 8260B Modified

μg/g

μg/g

Received: 2/6/06

% Rec

Analyzed **Extracted** $\overline{\mathbf{DF}}$ **Units** Limit 2/14/06 2/14/06 1.0 1.0 μg/g

1.0

1.0

1.0

Client Sample ID: B-30 @ 30'

Lab ID: 0602102-42B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

1 CSt I (amo.	75 14	T imit	<u>Units</u>	\mathbf{DF}	<u>Extracted</u>	<u>Analyzed</u>
Parameter TDUG Piccol (C12 C22)	<u>Result</u> ND	<u>Limit</u> 1.0	µg/g	1.0	2/10/06	3/2/06
TPHC Diesel (C12-C22) TPHC Motor Oil	ND	10	μg/g	1.0	2/10/06	3/2/06

2/14/06

2/14/06

2/14/06

2/14/06

2/14/06

2/14/06

Collected: 2/3/06 0:00

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Client Sample ID: B-33 @ 2'

Lab ID: 0602102-43A

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

M4 Nome	Gasoline Components/Additives	Reference: LUF 1/E	PA 8200B	Modifie
Test Name:	Oddomino Semperati		T- 177	17-4

Test Hame.	Dogult	Limit	<u>Units</u>	$\overline{ extbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
<u>Parameter</u>	Result		<u>уллур</u> µg/g	1.0	2/14/06	2/14/06
Methyl tert-butyl ether (MTBE)	ND	0.025		1.0	2/14/06	2/14/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/14/06	2/14/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g ···σ/σ	1.0	2/14/06	2/14/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/14/06	2/14/06
Benzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
Tert-amyl methyl ether (TAME)	ND	0.020	ha\a		2/14/06	2/14/06
1,2-Dichloroethane	ND	0.020	μg/g ·	1.0	2/14/06	2/14/06
Toluene	ND	0.0050	hg/g	1.0	2/14/06	2/14/06
1,2-Dibromoethane (EDB)	ND	0.020	µg/g	1.0	2/14/06	2/14/06
Chlorobenzene	ND	0.0050	µg/g	1.0		2/14/06
Ethylbenzene	ND	0.0050	ha\a	1.0	2/14/06	2/14/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/14/06	2/14/06
•	ND	0.0050	μg/g	1.0	2/14/06	
o-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,3-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/14/06	2/14/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/14/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	93.3	80-120	% Rec	1.0	2/14/06	2/14/06

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified **Analyzed Extracted** $\underline{\mathbf{DF}}$ **Units** Limit Result **Parameter** 2/14/06 2/14/06 μg/g 1.0 1.0 ND TPHC Gasoline

Client Sample ID: B-33 @ 2'

Lab ID: 0602102-43B

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Received: 2/6/06

Test Name: TPH as Diesel/Motor Oil	Reference: EPA 3550/GCFID(LUFT)/EPA 8013B						
Test Name: TPH as Diesel/Motor Oil	Desult	T imit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed	
Parameter TPHC Diesel (C12-C22) TPHC Motor Oil	<u>Result</u> 1.3 51	<u>Limit</u> 1.0 10	hā\ā hā\ā	1.0	2/10/06 2/10/06	3/2/06 3/2/06	

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Collected: 2/3/06 0:00

Client Sample ID: B-33 @ 4'

Lab ID: 0602102-44A

Test Name: Gasoline Components/Add	itives	Reference: LUFT/EPA 8260B Modified				
10001(000000000000000000000000000000000	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
<u>Parameter</u>	-	0.025	μg/g	1.0	2/14/06	2/15/06
Methyl tert-butyl ether (MTBE)	0.027	0.50	μg/g	1.0	2/14/06	2/15/06
Tert-butyl alcohol (TBA)	ND	0.020	μg/g	1.0	2/14/06	2/15/06
Di-isopropyl ether (DIPE)	ND		μg/g	1.0	2/14/06	2/15/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	·	1.0	2/14/06	2/15/06
Benzene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
Tert-amyl methyl ether (TAME)	ND	0.020	μg/g	1.0	2/14/06	2/15/06
1,2-Dichloroethane	ND	0.020	μg/g	1.0	2/14/06	2/15/06
Toluene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
1,2-Dibromoethane (EDB)	ND	0.020	μg/g	1.0	2/14/06	2/15/06
Chlorobenzene	ND	0.0050	μg/g ·		2/14/06	2/15/06
Ethylbenzene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
m,p-Xylene	ND	0.010	μg/g	1.0	2/14/06	2/15/06
o-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0		2/15/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	
1,2-Dichlorobenzene	ND	0.0050	µg/g	1.0	2/14/06	2/15/06
Surrogate: 1,4-Dichlorobenzene-d4	94.1	80-120	% Rec	1.0	2/14/06	2/15/06

Test Name: TPH as Gasoline

Extracted **Analyzed** \mathbf{DF} **Units** <u>Limit</u> Result **Parameter** 2/15/06 2/14/06 1.0 μg/g ND 1.0 TPHC Gasoline

Client Sample ID: B-33 @ 4'

Lab ID: 0602102-44B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Reference: LUFT/EPA 8260B Modified

Received: 2/6/06

Test Manne.	75 .14	T imit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Parameter TPHC Diesel (C12-C22) TPHC Motor Oil	<u>Result</u> ND 12	<u>Limit</u> 1.0 10	ha\a ha\a ha\a	1.0 1.0	2/10/06 2/10/06	3/2/06 3/2/06
(110 mote. o.,						

07-Mar-06

WorkOrder: 0602102

ANALYTICAL REPORT

Received: 2/6/06

Collected: 2/3/06 0:00

Client Sample ID: B-33 @ 8' **Lab ID:** 0602102-45A

III. of Marries	Gasoline	Components/Additives

Reference: LUFT/E	PA	8260B	Modified
-------------------	----	-------	----------

Test Name: Gasoline Components/Addit		Limit	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
Parameter	Result			1.0	2/14/06	2/15/06
Methyl tert-butyl ether (MTBE)	0.037	0.025	μg/g	1.0	2/14/06	2/15/06
Tert-butyl alcohol (TBA)	ND	0.50	μg/g	1.0	2/14/06	2/15/06
Di-isopropyl ether (DIPE)	ND	0.020	μg/g ug/g	1.0	2/14/06	2/15/06
Ethyl tert-butyl ether (ETBE)	ND	0.020	μg/g	1.0	2/14/06	2/15/06
Benzene	ND	0.0050	րց/ց րց/ց	1.0	2/14/06	2/15/06
Tert-amyl methyl ether (TAME)	ND	0.020 0.020	μg/g	1.0	2/14/06	2/15/06
1,2-Dichloroethane	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
Toluene	ND ND	0.020	μg/g	1.0	2/14/06	2/15/06
1,2-Dibromoethane (EDB)	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
Chlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
Ethylbenzene	ND	0.010	μg/g	1.0	2/14/06	2/15/06
m,p-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
o-Xylene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
1,3-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
1,4-Dichlorobenzene	ND	0.0050	μg/g	1.0	2/14/06	2/15/06
1,2-Dichlorobenzene Surrogate: 1,4-Dichlorobenzene-d4	93,3	80-120	% Rec	1.0	2/14/06	2/15/06

Test Name: TPH as Gasoline

Deference:	LUFT/EPA 8260B Modified
------------	-------------------------

Test Name: IPH as Gasonne	D14	Limit	<u>Units</u>	\mathbf{DF}	Extracted	<u>Analyzed</u>
Parameter TPHC Gasoline	<u>Result</u> ND	<u>1.0</u>	µg/g	1.0	2/14/06	2/15/06

Client Sample ID: B-33 @ 8'

Received: 2/6/06

Collected: 2/3/06 0:00

Lab ID: 0602102-45B

Test Name: TPH as Diesel/Motor Oil

Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

Test Name: IPH as Diesemmotor on	- "	T imit	Tinite	\mathbf{DF}	Extracted	<u>Analyzed</u>
Parameter TPHC Diesel (C12-C22) TPHC Motor Oil	<u>Result</u> ND ND	<u>Limit</u> 1.0 10	<u>Units</u> µg/g µg/g	1.0 1.0	2/10/06 2/10/06	3/2/06 3/2/06

North Coast Laboratories, Ltd.

Date: 07-Mar-06

CLIENT:

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Method Blank

0 1 10 100 45460	Batch ID: 15168	Test Code:	8260OXYS	Units: µg/g		Analysis	Date: 2/14/	706 1:27:00 AM	Prep Da	ate: 2/13/06	
Sample ID: MB-15168	Daton ID. 10100		ORGCMS3_0	160213A		SeqNo:	57057	76			
Client ID:		Run ID:	_					RPD Ref Val	%RPD	RPDLimit	Qual
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit					
Methyl tert-butyl ether (MTBE)	ND	0.025									
Tert-butyl alcohol (TBA)	ND	0.50									
Di-isopropyl ether (DIPE)	ND	0.020									
Ethyl tert-butyl ether (ETBE)	ND	0.020									
Benzene	ND	0.0050									
Tert-amyl methyl ether (TAME)	ND	0.020									
1,2-Dichloroethane	ND	0.020									
Toluene	ND	0.0050									
1,2-Dibromoethane (EDB)	ND	0.020									
Chlorobenzene	ND	0.0050									
Ethylbenzene	ND	0.0050									
m,p-Xylene	NĎ	0.010									
o-Xylene	. ND	0.0050									
1,3-Dichlorobenzene	ND	0.0050									
1,4-Dichlorobenzene	ND	0.0050									
1,2-Dichlorobenzene	ND	0.0050		_		3 80) 120) 0			
1,4-Dichlorobenzene-d4	0.920	0.10	1.00) C	92.0%		, 120	,			

SounPacific / Sounhein Environmental

QC SUMMARY REPORT

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

Method Blank

	Batch ID: 15177	Test Code	: 8260OXYS	Units: µg/g		Analysis	s Date: 2/14	/06 6:38:00 AM	Prep Da	ate: 2/14/06	
Sample ID: MB-15177	Batch ID. 1917					SeqNo:	5707	B1			
Client ID:		Run ID:	ORGCMS3_0					DDD Dof Vol	%RPD	RPDLimit	Qual
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val			
Methyl tert-butyl ether (MTBE)	ND	0.025									
Tert-butyl alcohol (TBA)	ND	0.50									
Di-isopropyl ether (DIPE)	ND	0.020									
Ethyl tert-butyl ether (ETBE)	ND	0.020									
Benzene	ND	0.0050									
Tert-amyl methyl ether (TAME)	ND	0.020									
1,2-Dichloroethane	ND	0.020									
Toluene	ND	0.0050									
1,2-Dibromoethane (EDB)	ND	0.020									
Chiorobenzene	ND	0.0050	1								
Ethylbenzene	ND	0.0050)								
m,p-Xylene	ND	0.010)								
o-Xylene	ND	0.0050)								
1,3-Dichlorobenzene	NE	0.0050)								
1,4-Dichlorobenzene	NE	0.0050)								
1,2-Dichlorobenzene	NE	0.0050		_	- 04.70	% 80	0 12	0			
1,4-Dichlorobenzene-d4	0.916	6 0.10) 1.0	0 (91.79	% O	0 12				

SounPacific / Sounhein Environmental

J - Analyte detected below quantitation limits

Method Blank

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

ample ID: MB 021006	Batch ID: R39687	Test Code: 8	8260OXYW	Units: µg/L		Analysis	Date: 2/1	0/06	5:56:00 AM	Prep Da	ie.	
lient ID:		Run ID:	ORGCMS3_0	60210B		SeqNo:	570	135				
nalyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLim	it R	PD Ref Val	%RPD	RPDLimit	Qual
lethyl tert-butyl ether (MTBE)	ND	1.0										
ert-butyl alcohol (TBA)	ND	10										
i-isopropyl ether (DIPE)	ND	1.0										
thyl tert-butyl ether (ETBE)	ND	1.0										
Benzene	ND	0.50										
ert-amyl methyl ether (TAME)	ND	1.0										
,2-Dichloroethane	ND	1.0										
Toluene	ND	0.50										
I,2-Dibromoethane (EDB)	ND	1.0										
Chlorobenzene	ND	1.0										J
Ethylbenzene	0.08048	0.50										J
n,p-Xylene	0.1284	0.50										
o-Xylene	ND	0.50							•			J
1,3-Dichlorobenzene	0.1653	1.0										j
1,4-Dichlorobenzene	0.1665	1.0										
1,2-Dichlorobenzene	ND	1.0	4.00	. 0	106%	81	1	39	0			
1,4-Dichlorobenzene-d4	1.06	0.10	1.00		10076							
Sample ID: MB-15168	Batch ID: 15168	Test Code	GASS-MS	Units: µg/g		Analys	is Date: 2	/14/0	6 1:27:00 AM	Prep L	oate: 2/13/06	
•		Run ID:	ORGCMS3_	060213B		SeqNo	o: 5 7	70608	3			
Client ID:				SPK Ref Val	% Rec	LowLimi	t HiahLi	mit	RPD Ref Val	%RPD	RPDLimit	Qua
Analyte	Result	Limit	SPK value									J
TPHC Gasoline	0.7038	1.0										
Sample ID: MB-15177	Batch ID: 15177	Test Code	: GASS-MS	Units: µg/g		Analys	sis Date: 2	2/14/0	06 6:38:00 AM	Prep (Date: 2/14/06	
·	paton in the total	Run ID:	ORGCMS3_	060214B		SeqN	o: 5	7083	2			
Client ID:					0/ 🗆 ==	Lowlim	it Highl	imit	RPD Ref Val	%RPD	RPDLimit	Qu
Analyte	Result	Limit	SPK value	SPK Ref Val	% Red							
TPHC Gasoline	0.5551	1.0										

R - RPD outside accepted recovery limits

SounPacific / Sounhein Environmental

QC SUMMARY REPORT

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

Method Blank

0	Batch ID: R39685	Test Code:	GASW-MS	Units: µg/L		Analysis	Date: 2/10	06 5:56:00 AM	Prep Da	te:	
Sample ID: MB 021006 Client ID:	Datol ID. Rossos		ORGCMS3_0	60210A		SeqNo:	57012				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD 	RPDLimit	Qual J
TPHC Gasoline	27.33	50									
Sample ID: MB-15145 Client ID:	Batch ID: 15145	Test Code: Run ID:	TPHDMS ORGC7_0602	Units: µg/g 213B		SeqNo:	5722		·	ate: 2/9/06 RPDLimit	Qual
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD		
TPHC Diesel (C12-C22) TPHC Motor Oil	0.6299 ND	1.0 10								_	J
Sample ID: MB-15153 Client ID:	Batch ID: 15153	Test Code: Run ID:	TPHDMS ORGC7_060	Units: µg/g		SeqNo	: 5752			ate: 2/10/06	_
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) TPHC Motor Oil	0.2614 ND	1.0 10	,								J
Sample ID: MB-15172 Client ID:	Batch ID: 15172	Test Code Run ID:	: TPHDMW ORGC7_060	Units: µg/L		SeqNo	575		•	ate: 2/14/06	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	: HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Diesel (C12-C22) TPHC Motor Oil	ND 41.91	50 170		-							J

North Coast Laboratories, Ltd.

Date: 07-Mar-06

CLIENT:

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

	Batch ID: 15168	Test Code:	8260OXYS	Units: µg/g		Analysis	Date: 2/13/	06 10:54:00 AM	Prep Da	ate: 2/13/06	
Sample ID: LCS-15168	Daton ID. 13100	Run ID:	ORGCMS3_0	50213A		SeqNo:	57057	'4			
Client ID:		Rull ID.			0/ D	I and imait	Highl imit	RPD Ref Val	%RPD	RPDLimit	Qu
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit					
	0.3794	0.025	0.400	0	94.9%	86	137	0			
Methyl tert-butyl ether (MTBE)	8,616	0.50	8.00	0	108%	43	185	0			
Tert-butyl alcohol (TBA)	0.3789	0.020	0.400	0	94.7%	80	137	0			
Di-isopropyl ether (DIPE)	0.4090	0.020	0.400	0	102%	81	133	0			
Ethyl tert-butyl ether (ETBE)	0.4066	0.0050	0.400	0	102%	74	137	0			
Benzene		0.020	0.400	0	103%	81	135	0			
Tert-amyl methyl ether (TAME)	0.4116	0.020	0.400	0	100%	82	154	. 0			
1,2-Dichloroethane	0.4020		0.400	0	103%	69	139	0			
Toluene	0.4121	0.0050	0.400	0	100%	71	133	0			
1,2-Dibromoethane (EDB)	0.4005	0.020	0.400	0	107%	73	135	0			
Chlorobenzene	0.4297	0.0050		0	104%	77	139	0			
Ethylbenzene	0.4152	0.0050	0.400	0	107%		147	·O			
m,p-Xylene	0.8595	0.010	0.800	0	106%			0			
o-Xylene	0.4234	0.0050	0.400	0	104%						
1,3-Dichlorobenzene	0.4147	0.0050	0.400		104%			_			
1,4-Dichlorobenzene	0.4235	0.0050	0.400								
1,2-Dichlorobenzene	0.3874	0.0050	0.400		96.9%						
1,4-Dichlorobenzene-d4	0.947	0.10	1.00	0	94.7%	80	120	,			

R - RPD outside accepted recovery limits

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

0 1 1D 1 00D 45469	Batch ID: 15168	Test Code:	8260OXYS	Units: µg/g		Analysis	Date: 2/14/	06 6:07:00 AM	Prep Da	ite: 2/13/06	
Sample ID: LCSD-15168	Datell ID. 13100	Run ID:	ORGCMS3_0	60213A		SeqNo:	57058	37			
Client ID:				SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Analyte	Result	Limit	SPK value					0.379	4.44%	20	
Methyl tert-butyl ether (MTBE)	0.3966	0.025	0.400	0	99.2%	86	137		1.79%	20	
Tert-butyl alcohol (TBA)	8.772	0.50	8.00	0	110%	43	185	8.62	5.51%	20	
Di-isopropyl ether (DIPE)	0.4004	0.020	0.400	0	100%	80	137	0.379		20	
Ethyl tert-butyl ether (ETBE)	0.4177	0.020	0.400	0	104%	81	133	0.409	2.09%	20	
•	0.4433	0.0050	0.400	0	111%	74	137	0.407	8.64%		
Benzene	0.4212	0.020	0.400	0	105%	81	135	0.412	2.32%	20	
Tert-amyl methyl ether (TAME)	0.4405	0.020	0.400	0	110%	82	154	0.402	9.15%	20	
1,2-Dichloroethane	0.4544	0.0050	0.400	0	114%	69	139		9.75%	20	
Toluene	0.4308	0.020	0.400	0	108%	71	133	0.400	7.28%	20	
1,2-Dibromoethane (EDB)	0.4699	0.0050	0.400	0	117%	73	135	0.430	8.93%	20	
Chlorobenzene		0.0050	0.400	_	111%	77	139	0.415	7.14%	20	
Ethylbenzene	0.4460	0.0030	0.800		115%	74	147	0.860	6.97%	20	
m,p-Xylene	0.9216		0.400	_	109%	62	147	0.423	2.74%	20	
o-Xylene	0.4352	0.0050	0.400	_	110%		128	0.415	5.77%	20	
1,3-Dichlorobenzene	0.4393	0.0050		_	114%			0.424	7.04%	20	
1,4-Dichlorobenzene	0.4544	0.0050	0.400	_	104%			0.387	7.37%	20	
1,2-Dichlorobenzene	0.4171	0.0050			95.7%				1.03%	15	
1,4-Dichlorobenzene-d4	0.957	0.10	1.00	•	50.1 70						

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

	Batch ID: 15177	Test Code: 8260OXYS Units: µg/g				Analysis	Prep Date: 2/14/06				
Sample ID: LCS-15177	Baldi ID. 13111	Run ID:	ORGCMS3_0			SeqNo:	57077	9			
Client ID:		Rull ID.						RPD Ref Val	%RPD	RPDLimit	Qua
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit					
Methyl tert-butyl ether (MTBE)	0.3903	0.025	0.400	0	97.6%	86	137	0			
-	8.604	0.50	8.00	0	108%	43	185	0			
Tert-butyl alcohol (TBA)	0.3916	0.020	0.400	0	97.9%	80	137	0			
Di-isopropyl ether (DIPE)	0.4266	0.020	0.400	0	107%	81	133	0			
Ethyl tert-butyl ether (ETBE)	0.4325	0.0050	0.400	0	108%	74	137	0			
Benzene		0.020	0.400	0	108%	81	135	0			
Tert-amyl methyl ether (TAME)	0.4333		0.400	0	106%	82	154	0			
1,2-Dichloroethane	0.4243	0.020	0.400	0	111%	69	139	0			
Toluene	0.4442	0.0050		0	106%	71	133	0			
1,2-Dibromoethane (EDB)	0.4253	0.020	0.400	0	116%	73	135	0			
Chlorobenzene	0.4634	0.0050	0.400	_	111%	77	139				
Ethylbenzene	0.4432	0.0050	0.400	_							
m,p-Xylene	0.9135	0.010	0.800	_	114%						
o-Xylene	0.4411	0.0050	0.400		110%						
1,3-Dichlorobenzene	0.4389	0.0050	0.400	0	110%						
1,4-Dichlorobenzene	0.4458	0.0050	0.400	0	111%						
1,2-Dichlorobenzene	0.4056	0.0050	0.400	0	101%						
1,4-Dichlorobenzene-d4	0.954	0.10	- 1.00	0	95.4%	80	120	0			

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

0	Batch ID: 15177	Test Code:	8260OXYS	Units: µg/g		Analysis	Date: 2/14 /	06 4:30:00 AM	Prep Date: 2/14/06		
Sample ID: LCSD-15177	Batom 15. Torri	Run ID:	ORGCMS3_0	60214A		SeqNo:	57078	80			
Client ID:					0/ D	LowLimit	∐iahl imit	RPD Ref Val	%RPD	RPDLimit	Qua
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LOWLITTIC					
Methyl tert-butyl ether (MTBE)	0.3899	0.025	0.400	0	97.5%	86	137	0.390	0.108%	20	
· ·	8.544	0.50	8.00	0	107%	43	185	8.60	0.704%	20	
Tert-butyl alcohol (TBA)	0.3842	0.020	0.400	0	96.0%	80	137	0.392	1.93%	20	
Di-isopropyl ether (DIPE)	0.4160	0.020	0.400	0	104%	81	133	0.427	2.52%	20	
Ethyl tert-butyl ether (ETBE)	0.4190	0.0050	0.400	0	105%	74	137	0.432	3.17%	20	
Benzene	0.4296	0.020	0.400	0	107%	81	135	0.433	0.846%	20	
Tert-amyl methyl ether (TAME)	0.4121	0.020	0.400	0	103%	82	154	0.424	2.92%	20	
1,2-Dichloroethane	0.4295	0.0050	0.400	. 0	107%	69	139	0.444	3.37%	20	
Toluene	0.4109	0.020	0.400	0	103%	71	133	0.425	3.47%	20	
1,2-Dibromoethane (EDB)		0.0050	0.400	0	112%	73	135	0.463	3.60%	20	
Chlorobenzene	0.4471	0.0050	0.400	0	108%	77	139	0.443	2.96%	20	
Ethylbenzene	0.4302		0.800	0	111%	74	147	0.914	2.89%	20	
m,p-Xylene	0.8875	0.010	0.400	0	109%	62	147	0.441	1.47%	20	
o-Xylene	0.4347	0.0050		_	108%		128	0.439	1.98%	20	
1,3-Dichlorobenzene	0,4303	0.0050			108%			0.446	2.89%	20	
1,4-Dichlorobenzene	0.4331	0.0050		_	101%				0.417%	20	
1,2-Dichlorobenzene	0.4039	0.0050		_	94.8%				0.677%	15	
1,4-Dichlorobenzene-d4	0.948	0.10	1.00	0	94.07	00	120	.0.00			

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

0	Batch ID: R39687	Test Code:	8260OXYW	Units: µg/L		Analysis	Date: 2/10/	06 4:14:00 AM	Prep Da	ate:	
Sample ID: LCS-06094	Balcii ID. 133001	Run ID:	ORGCMS3 0			SeqNo:	57013	34			
Client ID:		Kull ID.	_		9/ D	LowLimit	⊔iahl imit	RPD Ref Val	%RPD	RPDLimit	Qua
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LOWLITTIL					
Methyl tert-butyl ether (MTBE)	20.27	1.0	20.0	0	101%	80	120	0			
	418.8	10	400	0	105%	25	162	0			
Tert-butyl alcohol (TBA)	20.79	1.0	20.0	0	104%	80	120	0			
Di-isopropyl ether (DIPE)	19.88	1.0	20.0	0	99.4%	77	120	0			
Ethyl tert-butyl ether (ETBE)	21.27	0.50	20.0	0	106%	78	117	0			
Benzene	19.21	1.0	20.0	0	96.0%	64	136	0			
Tert-amyl methyl ether (TAME)		1.0	20.0	0	105%	74	121	0			
1,2-Dichloroethane	21.01		20.0	0	110%	80	120	0			
Toluene	22.06	0.50	20.0	0	116%	80	120	0			
1,2-Dibromoethane (EDB)	23.14	1.0	20.0	0	114%	80	120	0			
Chlorobenzene	22.72	1.0		0	105%	80	120	0			
Ethylbenzene	20.98	0.50	20.0	_	107%	-					
m,p-Xylene	42.79	0.50	40.0	0							
o-Xylene	20.41	0.50			102%						
1,3-Dichlorobenzene	22.46	1.0	20.0		112%						
1,4-Dichlorobenzene	23.35	1.0	20.0		117%			•			
1,2-Dichlorobenzene	21.86	1.0	20.0	0	109%						
1,4-Dichlorobenzene-d4	1.12	0.10	1.00	0	111%	81	139	0			

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

ample 113: 1 CSD-06094		Lest Code.	8260OXYW	Units: µg/L		Allalyolo	Date. En 1070	6 12:24:00 PM	•		
ample ID: LCSD-06094	Batch ID: R39687		ORGCMS3_06	-		SeqNo:	570705	5			
Client ID:			SPK value		% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
nalyte	Result	Limit 			100%	80	120	20.3	1.18%	20	
Methyl tert-butyl ether (MTBE)	20.03	1.0	20.0	0	100%	25	162	419	2.39%	20	
ert-butyl alcohol (TBA)	408.9	10	400	0	102%	80	120	20.8	2.26%	20	
Di-isopropyl ether (DIPE)	20.33	1.0	20.0	0 0.	96.8%	77	120	19.9	2.67%	20	
Ethyl tert-butyl ether (ETBE)	19.36	1.0	20.0	0.	107%	78	117	21.3	0.629%	20	
Benzene	21.41	0.50	20.0	0	93.3%	64	136	19.2	2.91%	20	
Fert-amyl methyl ether (TAME)	18.66	1.0	20.0	0	112%	74	121	21.0	6.70%	20	
1,2-Dichloroethane	22.47	1.0	20.0	0	108%	80	120	22.1	1.94%	20	
Toluene	21.63	0.50	20.0	Ū	113%	80	120	23.1	1.95%	20	
1,2-Dibromoethane (EDB)	22.69	1.0	20.0	0	111%	80	120	22.7	2.70%	20	
Chlorobenzene	22.11	1.0	20.0	0	101%	. 80	120	21.0	4.17%	20	
Ethylbenzene	20.12	0.50	20.0	0	101%	80	120	42.8	4.07%	20	
m,p-Xylene	41.08	0.50	40.0	0	93.7%	80	120	20.4	8.47%	20	
o-Xylene	18.75	0.50	20.0	0	105%	81	125	22.5	6.64%	20	
1,3-Dichlorobenzene	21.01	1.0	20.0	0	109%	79	132	23.4	6.45%	20	
1,4-Dichlorobenzene	21.90	1.0	20.0	0	103%	81	134	21.9	5.97%	20	
1,2-Dichlorobenzene	20.59	1.0	20.0	0	112%	81	139	1.12	0.172%	20	
1,4-Dichlorobenzene-d4	1.12	0.10	1.00		11270						
Sample ID: LCSG-15168	Batch ID: 15168	Test Code	: GASS-MS	Units: µg/g		Analysi		/06 12:10:00 PM	Prep D	ate: 2/13/06	
Client ID:		Run ID:	ORGCMS3_0	060213B		SeqNo	: 5706	06			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
TPHC Gasoline	20.83	1.0	20.0	0	104%	64	150	0			
	Batch ID: 15168	Test Code	: GASS-MS	Units: µg/g		Analys	is Date: 2/14	1/06 6:32:00 AM	Prep D	oate: 2/13/06	
Sample iD: LCSDG-15168	Batch ID. 13166	Run ID:	ORGCMS3_			SeqNo	o: 570 6	619			
Client ID:	"			SPK Ref Val	% Rec	LowLimit	t HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Analyte	Result	Limit			97.3%				6.79%	20	
TPHC Gasoline	19.46	1.0	20.0	0	97.3%	04	, 150	20.0			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike

	D 1 1 1D: 45477	Test Code:	GASS-MS	Units: µg/g		Analysis	Date: 2/14/ 0	6 5:21:00 AM	Prep Dat	te: 2/14/06	
ample ID: LCSG-15177	Batch ID: 15177		ORGCMS3_0			SeqNo:	57083	0			
ilient ID:	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit-	Qual
nalyte PHC Gasoline	20.36	1.0	20.0	0	102%	64	150	0			
	D-4-1 ID: 45477	Test Code:	GASS-MS	Units: µg/g		Analysis	Date: 2/14/	06 5:47:00 AM	Prep Da	te: 2/14/06	
Sample ID: LCSDG-15177 Client ID:	Batch ID: 15177	Run ID:	ORGCMS3_0			SeqNo:	57083	1			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD 	RPDLimit	Qual
FPHC Gasoline	20.37	1.0	20.0	0	102%	64	150	20.4	0.0497%		
	Batch ID: R39685	Test Code:	GASW-MS	Units: µg/L		Analysis	Date: 2/10/	06 5:05:00 AM	Prep Da	ate:	
Sample ID: LCS-06095 Client ID:	Datem B. Record	Run ID:	ORGCMS3_	060210A		SeqNo:	57012				0 -1
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual ———
TPHC Gasoline	957.4	50	1,000	0	95.7%	80	120 	0			
Sample ID: LCSD-06095	Batch ID: R39685	Test Code	: GASW-MS	Units: µg/L	•	Analysis		/06 12:49:00 PM	Prep D	ate:	
Client ID:		Run ID:	ORGCMS3_	060210A		SeqNo:			W DDD	RPDLimit	Qua
Analyte	Result	Limit	SPK value	SPK Ref Va	I % Rec			RPD Ref Val	%RPD		
TPHC Gasoline	844.4	50	1,000) (84.4%		120		12.5%		
Sample ID: LCS-15145	Batch ID: 15145	Test Code	: TPHDMS	Units: µg/	9	•		3/06 8:13:34 PM	Prep D	oate: 2/9/06	
Client ID:		Run ID:	ORGC7_06	0213B		SeqNo			%RPD	RPDLimit	Qua
Analyte	Result	Limit	SPK valu	e SPK Ref Va				RPD Ref Val		A DLIMIT	S
TPHC Diesel (C12-C22) TPHC Motor Oil	13.39	1.0		_	0 134% 0 116%						3

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

CLIENT:

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

	Batch ID: 15145	Test Code:	TPHDMS	Units: µg/g		Analysis	Date: 2/13/0	6 8:33:44 PM	Prep Da	te: 2/9/06	
Sample ID: LCSD-15145	Batch ID: 15145		ORGC7 0602			SeqNo:	57228	6			
Client ID:		Rull ID.	_		0/ D	Laudimit	Highl imit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec					 15	
TPHC Diesel (C12-C22)	13.54	1.0	10.0	0	135%	70	130	13.4 23.3	1.11% 4.98%	15	Ü
TPHC Motor Oil	22.14	10	20.0	0	111%		130				
0	Batch ID: 15153	Test Code:	TPHDMS	Units: µg/g		Analysis	Date: 3/1/0	6 11:27:12 PM	Prep Da	ite: 2/10/06	
Sample ID: LCS-15153	Bator is: 10100	Run ID:	ORGC7_0603	802A	•	SeqNo:	57526	32			
Client ID:	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte			10.0		94.3%	70	130	0			
TPHC Diesel (C12-C22)	9.433 23.62	1.0 10	20.0	0	118%	70	130	0			
TPHC Motor Oil						Anglygic	Date: 3/1/0	6 11:47:10 PM	Prep D	ate: 2/10/06	
Sample ID: LCSD-15153	Batch ID: 15153	Test Code	: TPHDMS	Units: µg/g							
Client ID:		Run ID:	ORGC7_060	302A		SeqNo:				00011-1	0
	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Analyte	9.568	1.0	10.0	0	95.7%	70	130	9.43	1.42%	15	
TPHC Diesel (C12-C22) TPHC Motor Oil	23.45	10	20.0	_	117%	70	130	23.6	0.743%	15	
TPHC WIOLOF OIL		7	. TDUDMW	Units: µg/L		Analysi	s Date: 3/3/	06 2:13:24 PM	Prep D	ate: 2/14/06	
Sample ID: LCS-15172	Batch ID: 15172		: TPHDMW			SeqNo					
Client ID:		Run ID:	ORGC7_060	303A		•	-		%RPD	RPDLimit	Qua
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit		RPD Ref Val	/61 AF D		
	364.0	50	500	0	72.8%						
TPHC Diesel (C12-C22) TPHC Motor Oil	991.7	170	1,000	0	99.2%	71	139	0			

CLIENT:

SounPacific / Sounhein Environmental

Work Order:

0602102

Project:

SP-120, Bigfoot Gas

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID: LCSD-15172	Batch ID: 15172	Test Code:	TPHDMW ORGC7 0603	Units: µg/L		Analysis SeqNo:	Date: 3/3/0 57591	6 2:33:37 PM	Prep Da	ate: 2/14/06	
Client ID: Analyte	Result	Limit	_	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) TPHC Motor Oil	368.5 979.3	50 170	500 1,000	0 0	73.7% 97.9%	72 71	124 139	364 992	1.22% 1.25%	15 15	

A	NORTH COAST
HOL	LABORATORIES LTD.
MAX	5680 West End Road • Arcata • CA 95521-9202

Chain of Custody # 0602102

P.	_of_	_5_	
	 		-

707-022-4049 Fax 707-022-0031								-			LA	ABORATORY NUMBER:
Attention:		PRESERVATIVE				7		38				TAT: □ 24 Hr □ 48 Hr □ 5 Day □ 5–7 Day ☑ STD (2–3 Wk) □ Other: RIOR AUTHORIZATION IS REQUIRED FOR RUSHES
KNEFIAND CA 95549 Phone: (707) Z69 - 0884 Copies of Report to: Augy @ Sond Pacific. (2)	m, trikba	CONTAINER 9 14			->							REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By:// Final Report: FAX ☐ Verbal ☐ By://
Sampler (Sign & Print): PROJECT INFORMATION Project Number:		ANALYSIS	Hallow	1-	5-0X1/5		5+571 0988					CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other
LAB ID SAMPLE ID DATE β-19 € 5' 2/2/06 β-21 € 4' 1	TIME MATRIX*	X	Ш		V 3	$\bot \bot$	100					SAMPLE CONDITION/SPECIAL INSTRUCTIONS
B-22@10° S-22@10° V B-23@9° 2/3/06			THE PERSON NAMED IN COLUMN	Thomas schools when to								COLOTTINE
B-75@4' B-27@4.5 B-28@4'				Darton on Commercial del Village	200	DESCRIPTION OF THE PROPERTY OF						
B-29@6' B-30@5'		V	1	¥		*					}	(1100=1 11) # 1060 2300 275 SAMPLE DISPOSAL
RELINQUISHED BY (Sign & Print) DA	TE/TIME					(Sign)	<u> </u>		2	15/11/ 16 /6	DE	□ NCL Disposal of Non-Contaminated □ Return □ Pickup
	1120			-	V			<u></u>		00	\mathbb{Y}	CHAIN OF CUSTODY SEALS Y/N/NA SHIPPED VIA: UPS Air-Ex Fed-Ex Bus Hand/

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

P	2	of	5
• •		— ·· –	

0602102

Chain of Custody

					-	
Attention:		PRESERVATIVE				TAT: □ 24 Hr □ 48 Hr □ 5 Day □ 5–7 Day STD (2–3 Wk) □ Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES
Phone: (707) 269 - 0884 Copies of Report to: ANTY & SUMPRACELL. (2)	m, brainly	CONTAINER 9,11,14				REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By://_ Final Report: FAX ☐ Verbal ☐ By://_
Sampler (Sign & Print): PROJECT INFORMATION Project Number: Project Name: Sign font Gas Purchase Order Number:		ANALYSIS TPH4 TPH4/mo	T- OXYS Pb ScaninderRS			CONTAINER CODES: 1—½ gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other
ABID SAMPLEID DATE 5-33 @ 5.5' 2/3/06 2 5-19 @ 2' 2/2/06 2 5-19 @ 9' 2 5-19 @ 5' 2 8-21 @ 4' 2 8-22 @ 15' 2 5-22 @ 15' 2 5-22 @ 15'	TIME MATRIX*	X X X	< × X			Global ID# TO60 2300 275
2 B-22 @ 25'	DATE/TIME 2/6/06 Kel	RECEIV	/ED BY (Sign)		ATE/TIMI 2/6/86 1620	□ NCL Disposal of Non-Contaminated □ Return □ Pickup CHAIN OF CUSTODY SEALS Y/N/NA
2 B-22 @5' 2 B-22 @10' 2 B-22 @ 15' 2 B-22 @ 20' 2 B-22 @ 25' RELINQUISHED BY (Sign & Print)	DATE/TIME 2/6/06 Kel	RECEIN	/ED BY (Sign)	7	46/01 1620	SAMPLE DISPOSAL NCL Disposal of Non-Contaminated Return Pickup

^{*}MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

M	NORTH COAST
HOX	LABORATORIES LTD.
WI	5680 West End Road • Arcata • CA 95521-9202

707-822-4649 Fax 707-822-6831

Chain of Custody

P. 3 of 5

0602102

Attention: Results & Invoice to: Sour Pacific Address: PO Box 13	PRESERVATIVE	TAT: □ 24 Hr □ 48 Hr □ 5 Day □ 5–7 Day STD (2–3 Wk) □ Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES
Phone: (707) 269 - 0884 Capies of Report to: any @ sound suffice com. Area	9,11	REPORTING REQUIREMENTS: State Forms □ Preliminary: FAX □ Verbal □ By:// Final Report: FAX □ Verbal □ By://
Sampler (Sign & Print): PROJECT INFORMATION Project Number: SP-120	ANALYSIS F (M)	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other
Project Name: Bigfoot Gas Purchase Order Number:		PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other SAMPLE CONDITION/SPECIAL INSTRUCTIONS
2 6-22 0 50' 2/2/06 S 2 8-23 0 5' 2/3/06 C 2 8-23 0 8' C 1 8-25 0 2'		
2 B-25 Q 8' 2 B-25 Q 12' 2 B-27 Q 2'		
2 B-27@4' 2 B-27@8' 2 G-27@1Z' V	RECEIVED BY (Sign) DATE/	SAMPLE DISPOSAL
RELINQUISHED BY (Sign & Print) DATE/TIME 2/6/06 981	May thompday 2/6	I I NCL Disposal of Non-Contaminated
**************************************	ont: SW-Surface Water: GW=Ground V	

M	NORTH COAST
HOY	LABORATORIES LTD.
W /	5680 West End Road • Arcata • CA 95521-9202

707-822-4649 Fax 707-822-6831

Chain of Custody

P	4	_ of _	5_
• • -		_	

0602102

LABORATORY NUMBER:

Attention:	CONTAINER PRESERVATIVE	TAT: 24 Hr 48 Hr 5 Day 5–7 Day STD (2–3 Wk) Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES
Kreeland, (A, 95549) Phone (767) 269 Copies of Report to: and (@ Sourfacilisc.com, grego) Sourfacilisc.com, dee sourfacilisc.com	CONTAINER 4	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By:// Final Report: FAX ☐ Verbal ☐ By://
Sampler (Sign & Print): PROJECT INFORMATION Project Number: SP-120 Project Name: Big Gast Gas Purchase Order Number:	PHO PH & Im K CX VS	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other
ABID SAMPLEID DATE TIME MATRIX* - B-28@2' 2/3/06 S - 28@10'	7257	Global ID# Tow2300275
RELINQUISHED BY (Sign & Print) DATE/TIME	RECEIVED BY (Sign) DATE/TI PLIEN Y CHOMPSON 2/9/	***** I C NC D: + N Contominated

Chain of Custody

P. 5 of 5

LABORATORY NUMBER:

Attention: Results & Invoice to: San Pacific Address: POBOX 13 Knee And, (A 95549 Phone: (707) 269 - 0884 Copies of Report to: Andy & Sour pacific, greace	CONTAINER PRESERVATIVE	TAT: 24 Hr 48 Hr 5 Day 5–7 Day STD (2–3 Wk) Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES REPORTING REQUIREMENTS: State Forms Preliminary: FAX Verbal By: Final Report: FAX Verbal By:
Sampler (Sign & Print): PROJECT INFORMATION Project Number: SP-120 Project Name: Bg-oat Ggs Purchase Order Number:	ANALYSIS CO 7H 4, 11, 11, 11, 11, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other
LABID SAMPLEID DATE TIME MATRIX* 2 B-30 @ 25'		SAMPLE CONDITION/SPECIAL INSTRUCTIONS
RELINQUISHED BY (Sign & Print) DATE/TIME	RECEIVED BY (Sign) DATE/TII)	Global 10 H TOGO 2300 275 SAMPLE DISPOSAL SAMPLE DISPOSAL
	lley thompson 246/2	Return Pickup CHAIN OF CUSTODY SEALS Y/N/NA SHIPPED VIA: UPS Air-Ex Fed-Ex Bus Hand

Appendix C

Standard Operating Procedures

Groundwater Level Measurements and Free Phase Hydrocarbon Measurements

All SounPacific staff and contractors shall adopt the following procedures any time that groundwater elevations are determined for the purposes of establishing groundwater gradient and direction, and prior to any sampling event.

Wells are to be tested for free phase hydrocarbons (free product) before the first development or sampling of any new well, and in any well that has historically contained free product.

Equipment Checklist

ш	Combination water level / free phase hydrocarbon indicator probe (probe)
	Gauging Data / Purge Calculations Sheet
	Pencil or Pen/sharpie
	Disposable Gloves
	Distilled Water and or know water source on site that is clean
	Alconox (powder) or Liquinox (liquid) non-phosphate cleaners—do not use soap!
	Buckets or Tubs for decontamination station
	Tools necessary to access wells
	Site Safety Plan
	This Standard Operating Procedure
	Notify Job site business that you will be arriving to conduct work.

Procedure

- 1. Review Site Safety Plan and utilize personal protection appropriate for the contaminants that may be encountered.
- 2. Access and open all monitoring wells to be measured. Allow wells to equilibrate for approximately 15 minutes before taking any measurements.

Standard Operating Procedure for Groundwater Level and Free Product Measurements Page 2 of 2

- 3. Decontaminate probe with Alconox or Liquinox solution, and rinse with distilled water.
- 4. Determine the diameter of the well to be measured and indicate this on the Gauging Data / Purge Calculations Sheet.
- 5. <u>Words of caution:</u> Please be careful with water level and product meters probes are not attached with high strength material so please make sure to avoid catching the end on anything in the well and make sure not to wind reel to the point that it could pull on the probe. *If product is suspect in a well, go to step 6, if no product is suspected go to step 7 below.*
- 6. When product is present or suspected: use the product level meter. Clip the static charge clamp to the side of the well casing. Then lower probe into the well through the product/water interface about one foot if possible. Then slowly raise the probe back up through the product/water interface layer and record the level as the tone changes from solid to broken-record this level in the Gauging Data / Purge Calculations Sheet to the nearest 0.01 foot (DTP). Continue to raise the probe up through the product until the tone stops completely-record this level on the Gauging Data / Purge Calculations Sheet to the nearest 0.01 foot (DTW). Then go to step 8.
- 7. When <u>no</u> product is present or suspected: If no free product is present, record the depth of the water (to the nearest 0.01 foot) relative to the painted black mark on the top of the well casing. Leave the probe in the well just a hair above the water level to ensure the well as equilibrated. As the well rises, the tone will sound. Make sure no increase in water levels have occurred in over a ten-minute period. Water levels can lower as well as rise. Make sure you note when the level you keep lowering the probe to has remained stable for at least ten minutes. Once this has been accomplished, please record this level in the Gauging Data / Purge Calculations Sheet to the nearest 0.01 foot (DTW).
- 8. Turn off the probe, and use the probe to determine the depth to the bottom of the well relative to the top of the well casing. This is the depth to bottom measurement (DTB).
- 9. Decontaminate probe and tape by washing in an Alconox/Liquinox solution (*read directions on solution for ratio of water to cleanser*) and use the toothbrush provided to remove any foreign substance from the probe and tape. Then triple rinse probe and tape with clean water and then proceed to take measurements in the next well.
- 10. If sampling is to occur, proceed to implement SounPacific's Standard Operating Procedure for Monitoring Well Purging and Sampling. If no sampling is to be performed, close and secure all wells and caps.

Standard Operating Procedures

Monitoring Well Purging and Groundwater Sampling

All SounPacific employees and contractors shall adopt the following procedures any time that groundwater samples are to be taken from an existing groundwater monitoring well.

Prior to the implementation of these procedures, the groundwater level **MUST** be measured and the presence of free phase hydrocarbons determined in accordance with SounPacific's Standard Operating Procedures for Groundwater Level Measurements and Free Phase Hydrocarbon Measurements.

Equipment Checklist

Gauging Data / Purge Calculations Sheet used for water level determination
Chain of Custody Form
pH/ Conductivity / Temperature meter
Pencil or Pen
Indelible Marker
Calculator
Disposable Gloves
Distilled Water
Alconox/liquinox liquid or powdered non-phosphate cleaner
Buckets or Tubs for decontamination station
Bottom-filling bailer or pumping device for purging
Disposable bottom-filling bailer and emptying device for sampling
String, twine or fishing line for bailers
Sample containers appropriate for intended analytical method (check with lab)
Sample labels
Site Safety Plan
Tools necessary to access wells
Drum space on site adequate for sampling event

SounPacific Standard Operating Procedures for Groundwater Level Measurements and Free Phase Hydrocarbon Measurements, Page 2 of 3

Procedure

- 1. Review Site Safety Plan and utilize personal protection appropriate for the contaminants that may be encountered.
- 2. Measure groundwater levels and check for the presence of free product in accordance with the Standard Operating Procedures for Groundwater Level Measurements and Free Phase Hydrocarbon Measurements.

Purging

- 3. Calculate and record the volume of standing water in each well using the information provided on the Gauging Data / Purge Calculations sheet.

 (DTB-DTW) x Conversion Factor = Casing Volume.
- 4. The purge volume shall be at least three times and no more than seven times the volume of standing water (the casing volume).
- 5. Purge the well by bailing or pumping water from the well into a calibrated receptacle, such as a five gallon bucket or tub with markings to indicate one gallon increments. Collect purgeate in a 55 gallon labeled drum and store on site. Drum labels should include the date, contents, site number, and SounPacific's name and telephone number.
- 6. Take measurements of pH, conductivity, temperature, and visual observations to verify the stabilization of these parameters. At least five measurements of these parameters should be made throughout the purging process. The parameters shall be considered stabilized if successive measurements vary by less than 0.25 pH units, 10% of conductivity in μS, and 1°C (or 1.8°F). Continue purging until at least three times the casing volume has been removed, and the measured parameters have stabilized as indicated above. Do not exceed seven casing volumes.
- 7. Take a final depth to groundwater measurement and calculate the casing volume of the recharged well. Ideally, the casing volume should have recharged to at least 80% of the original measured casing volume before sampling commences. If due to slow recharge rates it is not feasible to wait for the well to fully recharge, then note this on the Gauging Data / Purge Calculation Sheet and proceed to sample following the procedure below.

SounPacific Standard Operating Procedures for Groundwater Level Measurements and Free Phase Hydrocarbon Measurements, Page 3 of 3

Sampling

- 8. After completing groundwater measurement, and checking for free product if necessary, in accordance with SounPacific's Standard Operating Procedures for Groundwater Level Measurements and Free Phase Hydrocarbon Measurements, and after purging monitoring wells as described above, groundwater samples may be collected.
- 9. Slowly lower a clean, previously unused disposable bailer into the well water approximately half of the bailer length, and allow the bailer to slowly fill.
- 10. Withdraw the full bailer from the monitoring well and utilize the included (clean and unused) bottom-emptying device to fill the necessary sample containers, and seal the container with the included PTFE (Teflon) lined cap.
- 11. When filling VOAs, fill the VOA completely full, with the meniscus rising above the rim of the bottle. Carefully cap the VOA and invert it and gently tap it to determine whether air bubbles are trapped inside. If the VOA contains air bubbles, refill the VOA and repeat this step.
- 12. All samples shall be labeled with the Sample ID, the Sample Date, and the Sample Location or Project Number. Use an indelible marker for writing on sample labels.
- 13. Record all pertinent sample data on the Chain of Custody.
- 14. Place samples in an ice chest cooled to 4°C with ice or "blue ice". Bottles should be wrapped in bubble wrap, and VOA's should be inserted in a foam VOA holder to protect against breakage. Samples are to be kept at 4°C until delivered to the laboratory. Any transference of sample custody shall be indicated on the Chain of Custody with the appropriate signatures as necessary.
- 15. Utilize clean, previously unused gloves, bailer and line, and bottom-emptying device for each well sampled.
- 16. When finished with all sampling, close and secure all monitoring wells.
- 17. Leave the site cleaner than when you arrived and drive safely.